Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Elife ; 122023 05 31.
Article En | MEDLINE | ID: mdl-37254842

Resident macrophages are distributed across all tissues and are highly heterogeneous due to adaptation to different tissue-specific environments. The resident macrophages of the sensory ganglia (sensory neuron-associated macrophages, sNAMs) are in close contact with the cell body of primary sensory neurons and might play physiological and pathophysiological roles. After peripheral nerve injury, there is an increase in the population of macrophages in the sensory ganglia, which have been implicated in different conditions, including neuropathic pain development. However, it is still under debate whether macrophage accumulation in the sensory ganglia after peripheral nerve injury is due to the local proliferation of resident macrophages or a result of blood monocyte infiltration. Here, we confirmed that the number of macrophages increased in the sensory ganglia after the spared nerve injury (SNI) model in mice. Using different approaches, we found that the increase in the number of macrophages in the sensory ganglia after SNI is a consequence of the proliferation of resident CX3CR1+ macrophages, which participate in the development of neuropathic pain, but not due to infiltration of peripheral blood monocytes. These proliferating macrophages are the source of pro-inflammatory cytokines such as TNF and IL-1b. In addition, we found that CX3CR1 signaling is involved in the sNAMs proliferation and neuropathic pain development after peripheral nerve injury. In summary, these results indicated that peripheral nerve injury leads to sNAMs proliferation in the sensory ganglia in a CX3CR1-dependent manner accounting for neuropathic pain development. In conclusion, sNAMs proliferation could be modulated to change pathophysiological conditions such as chronic neuropathic pain.


Neuralgia , Peripheral Nerve Injuries , Mice , Animals , Peripheral Nerve Injuries/complications , Ganglia, Spinal , Macrophages , Ganglia, Sensory , Sensory Receptor Cells , Cell Proliferation , Hyperalgesia
2.
Cancer Immunol Res ; 10(11): 1299-1308, 2022 11 02.
Article En | MEDLINE | ID: mdl-36083496

Cytotoxic agents synergize with immune checkpoint inhibitors and improve outcomes for patients with several cancer types. Nonetheless, a parallel increase in the incidence of dose-limiting side effects, such as peripheral neuropathy, is often observed. Here, we investigated the role of the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis in the modulation of paclitaxel-induced neuropathic pain. We found that human and mouse neural tissues, including the dorsal root ganglion (DRG), expressed basal levels of PD-1 and PD-L1. During the development of paclitaxel-induced neuropathy, an increase in PD-L1 expression was observed in macrophages from the DRG. This effect depended on Toll-like receptor 4 activation by paclitaxel. Furthermore, PD-L1 inhibited pain behavior triggered by paclitaxel or formalin in mice, suggesting that PD-1/PD-L1 signaling attenuates peripheral neuropathy development. Consistent with this, we observed that the combined use of anti-PD-L1 plus paclitaxel increased mechanical allodynia and chronic neuropathy development induced by single agents. This effect was associated with higher expression of inflammatory markers (Tnf, Il6, and Cx3cr1) in peripheral nervous tissue. Together, these results suggest that PD-1/PD-L1 inhibitors enhance paclitaxel-induced neuropathic pain by suppressing PD-1/PD-L1 antinociceptive signaling.


Antineoplastic Agents, Phytogenic , Neuralgia , Rats , Humans , Mice , Animals , Programmed Cell Death 1 Receptor , Antineoplastic Agents, Phytogenic/adverse effects , Rats, Sprague-Dawley , Neuralgia/chemically induced , Neuralgia/metabolism , Paclitaxel , Analgesics/adverse effects
3.
Biochem Pharmacol ; 176: 113862, 2020 06.
Article En | MEDLINE | ID: mdl-32081790

Pain is a classical sign of inflammation, and sensitization of primary sensory neurons (PSN) is the most important mediating mechanism. This mechanism involves direct action of inflammatory mediators such as prostaglandins and sympathetic amines. Pharmacologic control of inflammatory pain is based on two principal strategies: (i) non-steroidal anti-inflammatory drugs targeting inhibition of prostaglandin production by cyclooxygenases and preventing nociceptor sensitization in humans and animals; (ii) opioids and dipyrone that directly block nociceptor sensitization via activation of the NO signaling pathway. This review summarizes basic concepts of inflammatory pain that are necessary to understand the mechanisms of peripheral NO signaling that promote peripheral analgesia; we also discuss therapeutic perspectives based on the modulation of the NO pathway.


Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Dipyrone/pharmacology , Inflammation/prevention & control , Nitric Oxide/metabolism , Pain/prevention & control , Signal Transduction/drug effects , Animals , Humans , Inflammation/complications , Inflammation/metabolism , Pain/etiology , Pain/metabolism , Prostaglandins/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism
...