Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Adv ; 10(27): eadn8356, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968348

RESUMEN

Eukaryotic phytoplankton, also known as algae, form the basis of marine food webs and drive marine carbon sequestration. Algae must regulate their motility and gravitational sinking to balance access to light at the surface and nutrients in deeper layers. However, the regulation of gravitational sinking remains largely unknown, especially in motile species. Here, we quantify gravitational sinking velocities according to Stokes' law in diverse clades of unicellular marine microalgae to reveal the cell size, density, and nutrient dependency of sinking velocities. We identify a motile algal species, Tetraselmis sp., that sinks faster when starved due to a photosynthesis-driven accumulation of carbohydrates and a loss of intracellular water, both of which increase cell density. Moreover, the regulation of cell sinking velocities is connected to proliferation and can respond to multiple nutrients. Overall, our work elucidates how cell size and density respond to environmental conditions to drive the vertical migration of motile algae.


Asunto(s)
Tamaño de la Célula , Nutrientes , Nutrientes/metabolismo , Gravitación , Fitoplancton/fisiología , Fitoplancton/metabolismo , Fotosíntesis , Microalgas/metabolismo
2.
mBio ; 14(5): e0158523, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37671861

RESUMEN

IMPORTANCE: Microbiologists have watched clear liquid turn cloudy for over 100 years. While the cloudiness of a culture is proportional to its total biomass, growth rates from optical density measurements are challenging to interpret when cells change size. Many bacteria adjust their size at different steady-state growth rates, but also when shifting between starvation and growth. Optical density cannot disentangle how mass is distributed among cells. Here, we use single-cell mass measurements to demonstrate that a population of cells in batch culture achieves a stable mass distribution for only a short period of time. Achieving steady-state growth in rich medium requires low initial biomass concentrations and enough time for individual cell mass accumulation and cell number increase via cell division to balance out. Steady-state growth is important for reliable cell mass distributions and experimental reproducibility. We discuss how mass variation outside of steady-state can impact physiology, ecology, and evolution experiments.


Asunto(s)
Bacterias , Reproducibilidad de los Resultados , División Celular , Medios de Cultivo , Biomasa
3.
Science ; 374(6566): 488-492, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34672730

RESUMEN

Although it is generally accepted that phages drive bacterial evolution, how these dynamics play out in the wild remains poorly understood. We found that susceptibility to viral killing in marine Vibrio is mediated by large and highly diverse mobile genetic elements. These phage defense elements display exceedingly fast evolutionary turnover, resulting in differential phage susceptibility among clonal bacterial strains while phage receptors remain invariant. Protection is cumulative, and a single bacterial genome can harbor 6 to 12 defense elements, accounting for more than 90% of the flexible genome among close relatives. The rapid turnover of these elements decouples phage resistance from other genomic features. Thus, resistance to phages in the wild follows evolutionary trajectories alternative to those predicted from laboratory-based evolutionary experiments.


Asunto(s)
Bacteriófagos/patogenicidad , Secuencias Repetitivas Esparcidas , Vibrio/genética , Vibrio/virología , Evolución Molecular , Variación Genética
4.
Plant Dis ; 105(4): 758-763, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33151814

RESUMEN

In North America, uncultivated, free-living grapevines (Vitis spp.) frequently grow alongside their cultivated counterparts, thus increasing the potential for exchange of microbiota. For this study, we used high-throughput sequencing (HTS) of small RNAs to survey for virus populations in free-living grapevines of the Finger Lakes region of New York State. Of 32 grapevines analyzed, 23 were free-living vines, while the remaining 9 were commercially grown Vitis vinifera plants from the same region. In total, 18 (78.3%) of the free-living grapevines tested were positive for grapevine asteroid mosaic-associated virus (GAMaV) infection by HTS, with detection confirmed by seminested reverse-transcription PCR and sequencing of nine isolates. Phylogenetic analyses of an ungapped alignment of the New York GAMaV sequences (length: 2,334 nucleotides) with the five known full-length or close to full-length global sequences showed that the New York isolates were broadly grouped. Of the nine cultivated plants, eight were infected with both hop stunt viroid and grapevine yellow speckle viroid 1, three were singly infected with grapevine leafroll-associated virus 3, and one harbored GAMaV. This limited survey of free-living grapevines, one of the first to use HTS, has highlighted the high incidence of a virus associated with disease in commercial V. vinifera.


Asunto(s)
Enfermedades de las Plantas , ARN Viral , New York , América del Norte , Filogenia , ARN Viral/genética , Virus Satélites
5.
Environ Microbiol ; 21(12): 4685-4705, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31503394

RESUMEN

Although plasmids play an important role in biological evolution, the number of plasmid families well-characterized in terms of geographical distribution and evolution remains limited, especially in archaea. Here, we describe the first systematic study of an archaeal plasmid family, the pT26-2 plasmid family. The in-depth analysis of the distribution, biogeography and host-plasmid co-evolution patterns of 26 integrated and 3 extrachromosomal plasmids of this plasmid family shows that they are widespread in Thermococcales and Methanococcales isolated from around the globe but are restricted to these two orders. All members of the family share seven core genes but employ different integration and replication strategies. Phylogenetic analysis of the core genes and CRISPR spacer distribution suggests that plasmids of the pT26-2 family evolved with their hosts independently in Thermococcales and Methanococcales, despite these hosts exhibiting similar geographic distribution. Remarkably, core genes are conserved even in integrated plasmids that have lost replication genes and/or replication origins suggesting that they may be beneficial for their hosts. We hypothesize that the core proteins encode for a novel type of DNA/protein transfer mechanism, explaining the widespread oceanic distribution of the pT26-2 plasmid family.


Asunto(s)
Archaea/genética , Evolución Molecular , Plásmidos/genética , Archaea/clasificación , Archaea/aislamiento & purificación , Archaea/metabolismo , Filogenia , Plásmidos/metabolismo
6.
Mol Ecol ; 27(8): 2025-2038, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29457297

RESUMEN

Interactions between bacteria and bacteriophage viruses (phages) are known to influence pathogen growth and virulence, microbial diversity and even biogeochemical cycling. Lytic phages in particular infect and lyse their host cells, and can therefore have significant effects on cell densities as well as competitive dynamics within microbial communities. Despite the known impacts of lytic phages on the ecology and evolution of bacteria in free-living communities, little is known about the role of lytic phages in host-associated microbiomes. We set out to characterize the impact of phages in the tomato phyllosphere, that is the bacteria associated with above-ground plant tissues, by transferring microbial communities from field-grown tomato plants to juvenile plants grown under mostly sterile conditions in either the presence or absence of their associated phage community. In three separate experiments, we found that the presence of phages affects overall bacterial abundance during colonization of new host plants. Furthermore, bacterial community analysis using 16S rRNA amplicon sequencing shows that phages significantly alter the relative abundance of dominant community members and can influence both within- and among-host diversity. These results underscore the importance of lytic phages in host-associated microbiomes and are relevant to microbiome transplantation approaches, as they suggest transferring nonbacterial components of the microbiome among hosts is likely to have a strong impact on growth of both the resident and colonizing microbiota.


Asunto(s)
Bacterias/genética , Bacteriófagos/genética , Ecología , Interacciones Huésped-Parásitos/genética , Bacterias/virología , Bacteriófagos/patogenicidad , Variación Genética , Solanum lycopersicum/microbiología , Microbiota/genética , ARN Ribosómico 16S/genética
7.
Virus Res ; 227: 82-87, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27720957

RESUMEN

In analyzing grapevine clones infected with grapevine red blotch associated virus, we identified a small number of isometric particles of approximately 30nm in diameter from an enriched fraction of leaf extract. A dominant protein of 25kDa was isolated from this fraction using SDS-PAGE and was identified by mass spectrometry as belonging to grapevine asteroid mosaic associated virus (GAMaV). Using a combination of three methods RNA-Seq, sRNA-Seq, and Sanger sequencing of RT- and RACE-PCR products, we obtained a full-length genome sequence consisting of 6719 nucleotides without the poly(A) tail. The virus possesses all of the typical conserved functional domains concordant with the genus Marafivirus and lies evolutionarily between citrus sudden death associated virus and oat blue dwarf virus. A large shift in RNA-Seq coverage coincided with the predicted location of the subgenomic RNA involved in coat protein (CP) expression. Genus wide sequence alignments confirmed the cleavage motif LxG(G/A) to be dominant between the helicase and RNA dependent RNA polymerase (RdRp), and the RdRp and CP domains. A putative overlapping protein (OP) ORF lacking a canonical translational start codon was identified with a reading frame context more consistent with the putative OPs of tymoviruses and fig fleck associated virus than with those of marafiviruses. BLAST analysis of the predicted GAMaV OP showed a unique relatedness to the OPs of members of the genus Tymovirus.


Asunto(s)
Genoma Viral , Análisis de Secuencia de ADN , Tymoviridae/clasificación , Tymoviridae/genética , Secuencias de Aminoácidos , Secuencia de Bases , Secuencia Conservada , Sistemas de Lectura Abierta , Filogenia , Dominios Proteicos , ARN Viral , Tymoviridae/aislamiento & purificación , Tymoviridae/ultraestructura , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...