Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7506, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980413

RESUMEN

Apical extracellular matrices (aECMs) are complex extracellular compartments that form important interfaces between animals and their environment. In the adult C. elegans cuticle, layers are connected by regularly spaced columnar structures known as struts. Defects in struts result in swelling of the fluid-filled medial cuticle layer ('blistering', Bli). Here we show that three cuticle collagens BLI-1, BLI-2, and BLI-6, play key roles in struts. BLI-1 and BLI-2 are essential for strut formation whereas activating mutations in BLI-6 disrupt strut formation. BLI-1, BLI-2, and BLI-6 precisely colocalize to arrays of puncta in the adult cuticle, corresponding to struts, initially deposited in diffuse stripes adjacent to cuticle furrows. They eventually exhibit tube-like morphology, with the basal ends of BLI-containing struts contact regularly spaced holes in the cuticle. Genetic interaction studies indicate that BLI strut patterning involves interactions with other cuticle components. Our results reveal strut formation as a tractable example of precise aECM patterning at the nanoscale.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Colágeno/genética , Matriz Extracelular/genética
2.
J Neurogenet ; 34(3-4): 298-306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32366143

RESUMEN

Synapses are dynamic connections that underlie essential functions of the nervous system. The addition, removal, and maintenance of synapses govern the flow of information in neural circuits throughout the lifetime of an animal. While extensive studies have elucidated many intrinsic mechanisms that neurons employ to modulate their connections, increasing evidence supports the roles of non-neuronal cells, such as glia, in synapse maintenance and circuit function. We previously showed that C. elegans epidermis regulates synapses through ZIG-10, a cell-adhesion protein of the immunoglobulin domain superfamily. Here we identified a member of the Pals1/MPP5 family, MAGU-2, that functions in the epidermis to modulate phagocytosis and the number of synapses by regulating ZIG-10 localization. Furthermore, we used light and electron microscopy to show that this epidermal mechanism removes neuronal membranes from the neuromuscular junction, dependent on the conserved phagocytic receptor CED-1. Together, our study shows that C. elegans epidermis constrains synaptic connectivity, in a manner similar to astrocytes and microglia in mammals, allowing optimized output of neural circuits.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Epidermis/fisiología , Proteínas de la Membrana/fisiología , Fagocitosis/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Neuronas Colinérgicas/fisiología , Levamisol/farmacología , Proteínas de la Membrana/genética , Neuronas Motoras/fisiología , Plasticidad Neuronal/fisiología , Filogenia , Isoformas de Proteínas/fisiología , ARN de Helminto/genética , ARN Mensajero/genética , Transgenes
3.
Mar Pollut Bull ; 129(1): 35-42, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29680559

RESUMEN

Measurements of total organic carbon (TOC) for two years in Kuwaiti waters showed high TOC levels (101.0-318.4, mean 161.2 µM) with maximal concentrations occurring within the polluted Kuwait Bay and decreasing offshore, indicating substantial anthropogenic component. Analysis of winter-time data revealed a large increase in density over the past four decades due to decrease in Shatt Al-Arab runoff, implying that the dissolved/suspended organic matter in surface waters of the northern Gulf could be quickly injected into the Gulf Deep Water (GDW). Our measurements together with an analysis of previously collected/published data suggest that the recent summer-time declining trend in oxygen in the GDW might be related to eutrophication. Higher preformed TOC and lower preformed dissolved oxygen contents of the high-salinity water mass that flows out of the Gulf and ventilates the mesopelagic oxygen minimum zone (OMZ) of the Northwestern Indian Ocean may cause expansion/intensification of the regional OMZ.


Asunto(s)
Monitoreo del Ambiente/métodos , Hidrocarburos/análisis , Oxígeno/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Eutrofización , Océano Índico , Kuwait , Estaciones del Año
4.
Proc Natl Acad Sci U S A ; 115(12): 3114-3119, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29511101

RESUMEN

Neural circuits utilize a coordinated cellular machinery to form and eliminate synaptic connections, with the neuronal cytoskeleton playing a prominent role. During larval development of Caenorhabditis elegans, synapses of motor neurons are stereotypically rewired through a process facilitated by dynamic microtubules (MTs). Through a genetic suppressor screen on mutant animals that fail to rewire synapses, and in combination with live imaging and ultrastructural studies, we find that intermediate filaments (IFs) stabilize MTs to prevent synapse rewiring. Genetic ablation of IFs or pharmacological disruption of IF networks restores MT growth and rescues synapse rewiring defects in the mutant animals, indicating that IF accumulation directly alters MT stability. Our work sheds light on the impact of IFs on MT dynamics and axonal transport, which is relevant to the mechanistic understanding of several human motor neuron diseases characterized by IF accumulation in axonal swellings.


Asunto(s)
Caenorhabditis elegans/fisiología , Proteínas de Filamentos Intermediarios/metabolismo , Microtúbulos/fisiología , Neuronas Motoras/fisiología , Animales , Transporte Axonal , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de Filamentos Intermediarios/genética , Neuronas Motoras/citología , Sinapsis/fisiología
5.
Elife ; 62017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28767038

RESUMEN

Subcellular localization of ribosomes defines the location and capacity for protein synthesis. Methods for in vivo visualizing ribosomes in multicellular organisms are desirable in mechanistic investigations of the cell biology of ribosome dynamics. Here, we developed an approach using split GFP for tissue-specific visualization of ribosomes in Caenorhabditis elegans. Labeled ribosomes are detected as fluorescent puncta in the axons and synaptic terminals of specific neuron types, correlating with ribosome distribution at the ultrastructural level. We found that axonal ribosomes change localization during neuronal development and after axonal injury. By examining mutants affecting axonal trafficking and performing a forward genetic screen, we showed that the microtubule cytoskeleton and the JIP3 protein UNC-16 exert distinct effects on localization of axonal and somatic ribosomes. Our data demonstrate the utility of tissue-specific visualization of ribosomes in vivo, and provide insight into the mechanisms of active regulation of ribosome localization in neurons.


Asunto(s)
Caenorhabditis elegans/fisiología , Microtúbulos/metabolismo , Neuronas/fisiología , Ribosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Transporte Biológico , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Coloración y Etiquetado
6.
Cell Rep ; 19(6): 1117-1129, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28494862

RESUMEN

Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Proteínas Sensoras del Calcio Neuronal/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Calcio/metabolismo , Neuronas Colinérgicas/fisiología , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/genética , Unión Proteica
7.
Curr Biol ; 25(12): 1594-605, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26051896

RESUMEN

A striking neuronal connectivity change in C. elegans involves the coordinated elimination of existing synapses and formation of synapses at new locations, without altering neuronal morphology. Here, we investigate the tripartite interaction between dynamic microtubules (MTs), kinesin-1, and vesicular cargo during this synapse remodeling. We find that a reduction in the dynamic MT population in motor neuron axons, resulting from genetic interaction between loss of function in the conserved MAPKKK dlk-1 and an α-tubulin mutation, specifically blocks synapse remodeling. Using live imaging and pharmacological modulation of the MT cytoskeleton, we show that dynamic MTs are increased at the onset of remodeling and are critical for new synapse formation. DLK-1 acts during synapse remodeling, and its function involves MT catastrophe factors including kinesin-13/KLP-7 and spastin/SPAS-1. Through a forward genetic screen, we identify gain-of-function mutations in kinesin-1 that can compensate for reduced dynamic MTs to promote synaptic vesicle transport during remodeling. Our data provide in vivo evidence supporting the requirement of dynamic MTs for kinesin-1-dependent axonal transport and shed light on the role of the MT cytoskeleton in facilitating neural circuit plasticity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Microtúbulos/metabolismo , Neuritas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Quinasas Quinasa Quinasa PAM/genética , Mutación , Plasticidad Neuronal , Sinapsis/metabolismo
8.
Cell Rep ; 9(3): 874-83, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25437544

RESUMEN

Precise regulation of microtubule (MT) dynamics is increasingly recognized as a critical determinant of axon regeneration. In contrast to developing neurons, mature axons exhibit noncentrosomal microtubule nucleation. The factors regulating noncentrosomal MT architecture in axon regeneration remain poorly understood. We report that PTRN-1, the C. elegans member of the Patronin/Nezha/calmodulin- and spectrin-associated protein (CAMSAP) family of microtubule minus-end-binding proteins, is critical for efficient axon regeneration in vivo. ptrn-1-null mutants display generally normal developmental axon outgrowth but significantly impaired regenerative regrowth after laser axotomy. Unexpectedly, mature axons in ptrn-1 mutants display elevated numbers of dynamic axonal MTs before and after injury, suggesting that PTRN-1 inhibits MT dynamics. The CKK domain of PTRN-1 is necessary and sufficient for its functions in axon regeneration and MT dynamics and appears to stabilize MTs independent of minus-end localization. Whereas in developing neurons, PTRN-1 inhibits activity of the DLK-1 mitogen-activated protein kinase (MAPK) cascade, we find that, in regeneration, PTRN-1 and DLK-1 function together to promote axonal regrowth.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Regeneración , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/química , Proteínas Asociadas a Microtúbulos/química , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación , Polimerizacion , Unión Proteica , Estructura Terciaria de Proteína , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Relación Estructura-Actividad , Regulación hacia Arriba
9.
Genetics ; 198(3): 1101-15, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25194163

RESUMEN

The PHR (Pam/Highwire/RPM-1) family of ubiquitin E3 ligases plays conserved roles in axon patterning and synaptic development. Genetic modifier analysis has greatly aided the discovery of the signal transduction cascades regulated by these proteins. In Caenorhabditis elegans, loss of function in rpm-1 causes axon overgrowth and aberrant presynaptic morphology, yet the mutant animals exhibit little behavioral deficits. Strikingly, rpm-1 mutations strongly synergize with loss of function in the presynaptic active zone assembly factors, syd-1 and syd-2, resulting in severe locomotor deficits. Here, we provide ultrastructural evidence that double mutants, between rpm-1 and syd-1 or syd-2, dramatically impair synapse formation. Taking advantage of the synthetic locomotor defects to select for genetic suppressors, previous studies have identified the DLK-1 MAP kinase cascade negatively regulated by RPM-1. We now report a comprehensive analysis of a large number of suppressor mutations of this screen. Our results highlight the functional specificity of the DLK-1 cascade in synaptogenesis. We also identified two previously uncharacterized genes. One encodes a novel protein, SUPR-1, that acts cell autonomously to antagonize RPM-1. The other affects a conserved protein ESS-2, the homolog of human ES2 or DGCR14. Loss of function in ess-2 suppresses rpm-1 only in the presence of a dlk-1 splice acceptor mutation. We show that ESS-2 acts to promote accurate mRNA splicing when the splice site is compromised. The human DGCR14/ES2 resides in a deleted chromosomal region implicated in DiGeorge syndrome, and its mutation has shown high probability as a risk factor for schizophrenia. Our findings provide the first functional evidence that this family of proteins regulate mRNA splicing in a context-specific manner.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Genes Supresores , Factores de Intercambio de Guanina Nucleótido/genética , Empalme del ARN/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Genes de Helminto , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mutación/genética , Fenotipo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Sitios de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vesículas Sinápticas/metabolismo
10.
J Cell Biol ; 203(5): 849-63, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24322429

RESUMEN

Synaptic vesicle (SV) release is spatially and temporally regulated by a network of proteins that form the presynaptic active zone (AZ). The hallmark of most AZs is an electron-dense projection (DP) surrounded by SVs. Despite their importance for our understanding of triggered SV release, high-resolution analyses of DP structures are limited. Using electron microscopy, we show that DPs at Caenorhabditis elegans neuromuscular junctions (NMJs) were highly structured, composed of building units forming bays in which SVs are docked to the AZ membrane. Furthermore, larger ribbonlike DPs that were multimers of the NMJ building unit are found at synapses between inter- and motoneurons. We also demonstrate that DP size is determined by the activity of the AZ protein SYD-2/Liprin-α. Whereas loss of syd-2 function led to smaller DPs, syd-2 gain-of-function mutants displayed larger ribbonlike DPs through increased recruitment of ELKS-1/ELKS. Therefore, our data suggest that a main role of SYD-2/Liprin-α in synaptogenesis is to regulate the polymerization of DPs.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Unión Neuromuscular/ultraestructura , Fosfoproteínas/fisiología , Vesículas Sinápticas/fisiología , Animales , Transporte Biológico , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Modelos Biológicos , Unión Neuromuscular/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Vesículas Sinápticas/metabolismo
11.
Elife ; 2: e01180, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24220508

RESUMEN

The presynaptic active zone proteins UNC-13/Munc13s are essential for synaptic vesicle (SV) exocytosis by directly interacting with SV fusion apparatus. An open question is how their association with active zones, hence their position to Ca(2+) entry sites, regulates SV release. The N-termini of major UNC-13/Munc13 isoforms contain a non-calcium binding C2A domain that mediates protein homo- or hetero-meric interactions. Here, we show that the C2A domain of Caenorhabditis elegans UNC-13 regulates release probability of evoked release and its precise active zone localization. Kinetics analysis of SV release supports that the proximity of UNC-13 to Ca(2+) entry sites, mediated by the C2A-domain containing N-terminus, is critical for accelerating neurotransmitter release. Additionally, the C2A domain is specifically required for spontaneous release. These data reveal multiple roles of UNC-13 C2A domain, and suggest that spontaneous release and the fast phase of evoked release may involve a common pool of SVs at the active zone. DOI: http://dx.doi.org/10.7554/eLife.01180.001.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas Portadoras/fisiología , Vesículas Sinápticas/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cinética , Mutación
12.
Dev Cell ; 23(4): 716-28, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23000142

RESUMEN

The microtubule (MT) cytoskeleton of a mature axon is maintained in a stabilized steady state, yet after axonal injury it can be transformed into a dynamic structure capable of supporting axon regrowth. Using Caenorhabditis elegans mechanosensory axons and in vivo imaging, we find that, in mature axons, the growth of MTs is restricted in the steady state by the depolymerizing kinesin-13 family member KLP-7. After axon injury, we observe a two-phase process of MT growth upregulation. First, the number of growing MTs increases at the injury site, concomitant with local downregulation of KLP-7. A second phase of persistent MT growth requires the cytosolic carboxypeptidase CCPP-6, which promotes Δ2 modification of α-tubulin. Both phases of MT growth are coordinated by the DLK-1 MAP kinase cascade. Our results define how the stable MT cytoskeleton of a mature neuron is converted into the dynamically growing MT cytoskeleton of a regrowing axon.


Asunto(s)
Axones/metabolismo , Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Regeneración Nerviosa , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/metabolismo , Animales , Caenorhabditis elegans/genética
13.
J Neurosci ; 32(12): 4196-211, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22442082

RESUMEN

In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD neighboring neurons, suggesting a cell nonautonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain was sufficient for this function of FMI-1 in GABAergic neuromuscular junction development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. The cdh-4 is expressed by the VD neurons and seems to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding.


Asunto(s)
Cadherinas/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Neuronas GABAérgicas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Axones/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neuronas GABAérgicas/ultraestructura , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Microscopía Inmunoelectrónica , Mutación/genética , Interferencia de ARN/fisiología , Sinapsis/genética , Vesículas Sinápticas/genética
14.
Development ; 137(21): 3603-13, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20876652

RESUMEN

Peroxidasins form a highly conserved family of extracellular peroxidases of unknown cellular function. We identified the C. elegans peroxidasin PXN-2 in screens for mutants defective in embryonic morphogenesis. We find that PXN-2 is essential for specific stages of embryonic morphogenesis and muscle-epidermal attachment, and is also required postembryonically for basement membrane integrity. The peroxidase catalytic activity of PXN-2 is necessary for these developmental roles. pxn-2 mutants display aberrant ultrastructure of the extracellular matrix, suggesting a role in basement membrane consolidation. PXN-2 affects specific axon guidance choice points in the developing nervous system but is dispensable for maintenance of process positions. In adults, loss of pxn-2 function promotes regrowth of axons after injury, providing the first evidence that C. elegans extracellular matrix can play an inhibitory role in axon regeneration. Loss of function in the closely related C. elegans peroxidasin pxn-1 does not cause overt developmental defects. Unexpectedly, pxn-2 mutant phenotypes are suppressed by loss of function in pxn-1 and exacerbated by overexpression of wild-type pxn-1, indicating that PXN-1 and PXN-2 have antagonistic functions. These results demonstrate that peroxidasins play crucial roles in development and reveal a new role for peroxidasins as extracellular inhibitors of axonal regeneration.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/fisiología , Morfogénesis/genética , Regeneración Nerviosa/genética , Peroxirredoxinas/fisiología , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Adhesión Celular/genética , Adhesión Celular/fisiología , Embrión no Mamífero , Desarrollo Embrionario/genética , Epidermis/embriología , Epidermis/metabolismo , Epidermis/fisiología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/fisiología , Músculos/embriología , Músculos/metabolismo , Peroxidasa/genética , Peroxidasa/fisiología , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Filogenia , Peroxidasina
15.
Development ; 137(13): 2237-50, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20530551

RESUMEN

Nuclear pre-mRNA 3'-end processing is vital for the production of mature mRNA and the generation of the 3' untranslated region (UTR). However, the roles and regulation of this event in cellular development remain poorly understood. Here, we report the function of a nuclear pre-mRNA 3'-end processing pathway in synapse and axon formation in C. elegans. In a genetic enhancer screen for synaptogenesis mutants, we identified a novel polyproline-rich protein, Synaptic defective enhancer-1 (SYDN-1). Loss of function of sydn-1 causes abnormal synapse and axon development, and displays striking synergistic interactions with several genes that regulate specific aspects of synapses. SYDN-1 is required in neurons and localizes to distinct regions of the nucleus. Through a genetic suppressor screen, we found that the neuronal defects of sydn-1 mutants are suppressed by loss of function in Polyadenylation factor subunit-2 (PFS-2), a conserved WD40-repeat protein that interacts with multiple subcomplexes of the pre-mRNA 3'-end processing machinery. PFS-2 partially colocalizes with SYDN-1, and SYDN-1 influences the nuclear abundance of PFS-2. Inactivation of several members of the nuclear 3'-end processing complex suppresses sydn-1 mutants. Furthermore, lack of sydn-1 can increase the activity of 3'-end processing. Our studies provide in vivo evidence for pre-mRNA 3'-end processing in synapse and axon development and identify SYDN-1 as a negative regulator of this cellular event in neurons.


Asunto(s)
Regiones no Traducidas 3' , Axones/metabolismo , Caenorhabditis elegans/metabolismo , Sinapsis , Animales , Factores de Escisión y Poliadenilación de ARNm/metabolismo
16.
PLoS One ; 5(3): e9655, 2010 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-20300184

RESUMEN

Regulation of microtubule dynamics underlies many fundamental cellular mechanisms including cell division, cell motility, and transport. In neurons, microtubules play key roles in cell migration, axon outgrowth, control of axon and synapse growth, and the regulated transport of vesicles and structural components of synapses. Loss of synapse and axon integrity and disruption of axon transport characterize many neurodegenerative diseases. Recently, mutations that specifically alter the assembly or stability of microtubules have been found to directly cause neurodevelopmental defects or neurodegeneration in vertebrates. We report here the characterization of a missense mutation in the C-terminal domain of C. elegans alpha-tubulin, tba-1(ju89), that disrupts motor neuron synapse and axon development. Mutant ju89 animals exhibit reduction in the number and size of neuromuscular synapses, altered locomotion, and defects in axon extension. Although null mutations of tba-1 show a nearly wild-type pattern, similar axon outgrowth defects were observed in animals lacking the beta-tubulin TBB-2. Genetic analysis reveals that tba-1(ju89) affects synapse development independent of its role in axon outgrowth. tba-1(ju89) is an altered function allele that most likely perturbs interactions between TBA-1 and specific microtubule-associated proteins that control microtubule dynamics and transport of components needed for synapse and axon growth.


Asunto(s)
Axones/fisiología , Caenorhabditis elegans/fisiología , Neuronas Motoras/metabolismo , Sinapsis/fisiología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microtúbulos/genética , Datos de Secuencia Molecular , Mutación Missense , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Sinapsis/metabolismo
17.
J Neurosci ; 30(9): 3175-83, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-20203177

RESUMEN

Axons of adult Caenorhabditis elegans neurons undergo robust regenerative growth after laser axotomy. Here we show that axotomy of PLM sensory neurons triggers axonal calcium waves whose amplitude correlates with the extent of regeneration. Genetic elevation of Ca(2+) or cAMP accelerates formation of a growth cone from the injured axon. Elevated Ca(2+) or cAMP also facilitates apparent fusion of axonal fragments and promotes branching to postsynaptic targets. Conversely, inhibition of voltage-gated calcium channels or calcium release from internal stores reduces regenerative growth. We identify the fusogen EFF-1 as critical for axon fragment fusion and the basic leucine zipper domain (bZip) protein CREB (cAMP response element-binding protein) as a key effector for branching. The effects of elevated Ca(2+) or cAMP on regrowth require the MAPKKK (mitogen-activated protein kinase kinase kinase) DLK-1. Increased cAMP signaling can partly bypass the requirement for the bZip protein CEBP-1, a downstream factor of the DLK-1 kinase cascade. These findings reveal the relationship between Ca(2+)/cAMP signaling and the DLK-1 MAPK (mitogen-activated protein kinase) cascade in regeneration.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Calcio/metabolismo , AMP Cíclico/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Regeneración Nerviosa/fisiología , Animales , Axotomía , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica/fisiología , Conos de Crecimiento/metabolismo , Rayos Láser , Sistema de Señalización de MAP Quinasas/fisiología , Glicoproteínas de Membrana/metabolismo , Regulación hacia Arriba/fisiología
18.
Proc Natl Acad Sci U S A ; 106(5): 1457-61, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19164535

RESUMEN

Wounding of epidermal layers triggers multiple coordinated responses to damage. We show here that the Caenorhabditis elegans ortholog of the tumor suppressor death-associated protein kinase, dapk-1, acts as a previously undescribed negative regulator of barrier repair and innate immune responses to wounding. Loss of DAPK-1 function results in constitutive formation of scar-like structures in the cuticle, and up-regulation of innate immune responses to damage. Overexpression of DAPK-1 represses innate immune responses to needle wounding. Up-regulation of innate immune responses in dapk-1 requires the TIR-1/p38 signal transduction pathway; loss of function in this pathway synergizes with dapk-1 to drastically reduce adult lifespan. Our results reveal a previously undescribed function for the DAPK tumor suppressor family in regulation of epithelial damage responses.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Caenorhabditis elegans/inmunología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Asociadas a Muerte Celular , Inmunidad Innata , Microscopía Electrónica , Mutación , Transducción de Señal
19.
Dev Neurobiol ; 69(2-3): 174-90, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19105215

RESUMEN

How endosomes contribute to the maintenance of vesicular structures at presynaptic terminals remains controversial and poorly understood. Here, we have investigated synaptic endosomal compartments in the presynaptic terminals of C. elegans GABAergic motor neurons. Using RAB reporters, we find that several subsynaptic compartments reside in, or near, presynaptic regions. Loss of function in the C. elegans JIP3 protein, UNC-16, causes a RAB-5-containing compartment to accumulate abnormally at presynaptic terminals. Ultrastructural analysis shows that synapses in unc-16 mutants contain reduced number of synaptic vesicles, accompanied by an increase in the size and number of cisternae. FRAP analysis revealed a slow recovery of RAB-5 in unc-16 mutants, suggestive of an impairment of RAB-5 activity state and local vesicular trafficking. Overexpression of RAB-5:GDP partially suppresses, whereas overexpression of RAB-5:GTP enhances, the synaptic defects of unc-16 mutants. Our data demonstrate a novel function of UNC-16 in the regulation of synaptic membrane trafficking and suggest that the synaptic RAB-5 compartment contributes to synaptic vesicle biogenesis or maintenance.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Terminales Presinápticos/metabolismo , Membranas Sinápticas/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/anatomía & histología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Endocitosis/genética , Guanosina Difosfato/metabolismo , Proteínas Luminiscentes/genética , Microscopía Confocal/métodos , Mutación/genética , Terminales Presinápticos/ultraestructura , Membranas Sinápticas/genética , Membranas Sinápticas/ultraestructura , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Factores de Tiempo , Proteínas de Unión al GTP rab5/genética
20.
Development ; 135(16): 2747-2756, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18614580

RESUMEN

The F-spondin family of extracellular matrix proteins has been implicated in axon outgrowth, fasciculation and neuronal cell migration, as well as in the differentiation and proliferation of non-neuronal cells. In screens for mutants defective in C. elegans embryonic morphogenesis, we identified SPON-1, the only C. elegans member of the spondin family. SPON-1 is synthesized in body muscles and localizes to integrin-containing structures on body muscles and to other basement membranes. SPON-1 maintains strong attachments of muscles to epidermis; in the absence of SPON-1, muscles progressively detach from the epidermis, causing defective epidermal elongation. In animals with reduced integrin function, SPON-1 becomes dose dependent, suggesting that SPON-1 and integrins function in concert to promote the attachment of muscles to the basement membrane. Although spon-1 mutants display largely normal neurite outgrowth, spon-1 synergizes with outgrowth defective mutants, revealing a cryptic role for SPON-1 in axon extension. In motoneurons, SPON-1 acts in axon guidance and fasciculation, whereas in interneurons SPON-1 maintains process position. Our results show that a spondin maintains cell-matrix adhesion in multiple tissues.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Proteínas de la Matriz Extracelular/fisiología , Sistema Nervioso/embriología , Secuencia de Aminoácidos , Animales , Axones/fisiología , Membrana Basal/fisiología , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/genética , Adhesión Celular , Proteínas de la Matriz Extracelular/genética , Integrinas/fisiología , Datos de Secuencia Molecular , Morfogénesis/fisiología , Neuronas Motoras/fisiología , Músculos/fisiología , Mutación , Sistema Nervioso/metabolismo , Neuritas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA