Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Cancer Med ; 13(2): e6987, 2024 Jan.
Article En | MEDLINE | ID: mdl-38334464

INTRODUCTION: Triple-negative breast cancer (TNBC), recognized as the most heterogeneous type of breast cancer (BC), exhibits a worse prognosis than other subtypes. Mitochondria dynamics play a vital role as mediators in tumorigenesis by adjusting to the cell microenvironments. However, the relationship between mitochondrial dynamics and metabophenotype exhibits discrepancies and divergence across various research and BC models. Therefore, this study aims to explore the role of mitochondrial dynamics in TNBC drug resistance and tumorigenesis. METHODS: The Wst-8 test was conducted to assess doxorubicin sensitivity in HCC38, MDA-MB-231 (TNBC), and MCF-7 (luminal). Confocal microscopy and FACS were used to quantify the mitochondrial membrane potential (ΔφM), mitophagy, and reactive oxygen species (ROS) production. Agilent Seahorse XF Analyzer was utilized to measure metabolic characteristics. Dynamin-related protein-1 (DRP1), Parkin, and p62 immunohistochemistry staining were performed using samples from 107 primary patients with BC before and after neoadjuvant chemotherapy (NAC). RESULTS: MDA-MB-231, a TNBC cell line with reduced sensitivity to doxorubicin, reduced ΔφM, and enhanced mitophagy to maintain ROS production through oxidative phosphorylation (OXPHOS)-based metabolism. HCC38, a doxorubicin-sensitive cell line, exhibited no alterations in ΔφM or mitophagy. However, it demonstrated an increase in ROS production and glycolysis. Clinicopathological studies revealed that pretreatment (before NAC) expression of DRP1 was significant in TNBC, as was pretreatment expression of Parkin in the hormone receptor-negative group. Furthermore, low p62 levels seem to be a risk factor for recurrence-free survival. CONCLUSION: Our findings indicated that the interplay between mitophagy, linked to a worse clinical prognosis, and OXPHOS metabolism promoted chemotherapy resistance in TNBC. Mitochondrial fission is prevalent in TNBC. These findings suggest that targeting the unique mitochondrial metabolism and dynamics in TNBC may offer a novel therapeutic strategy for patients with TNBC.


Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Mitochondrial Dynamics , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Ubiquitin-Protein Ligases/genetics , Carcinogenesis , Tumor Microenvironment
2.
Cancers (Basel) ; 15(8)2023 Apr 18.
Article En | MEDLINE | ID: mdl-37190293

Breast cancer resistance protein (BCRP), also known as ATP-binding cassette transporter G2 (ABCG2), is associated with chemotherapy resistance. BCRP is also implicated in breast cancer stem cells, and is reported as a poor prognostic factor. However, the relationship of BCRP levels in breast cancer tissues with chemotherapy resistance and prognosis has not been clarified. We aimed to evaluate the correlation between BCRP expression and prognosis in breast cancer using immunohistochemistry with fluorescent phosphor-integrated dots (IHC-PIDs). A total of 37 breast cancer patients with residual cancer in the primary tumor and axillary lymph nodes were evaluated. BCRP levels in breast cancer tissue and metastatic lymph nodes were quantitatively detected after neoadjuvant chemotherapy (NAC). Among these 37 patients, 24 had corresponding core needle biopsies obtained before NAC. Biomarker assay with IHC-PIDs showed high accuracy for the quantitative assessment of BCRP with low expression. High BCRP expression in the primary tumor and metastatic lymph nodes after preoperative chemotherapy was associated with worse overall survival. In conclusion, high BCRP levels may be associated with poor prognosis in patients with breast cancer, having residual tumors within the primary tumor and lymph nodes after preoperative chemotherapy. These findings provide a basis for further appropriate adjuvant therapy in these patients.

3.
Biochem Biophys Res Commun ; 659: 20-28, 2023 06 04.
Article En | MEDLINE | ID: mdl-37031590

Skeletal muscle fiber type specification is changeable during muscle regeneration following cardiotoxin (CTX) injection; however, the mechanism of muscle fiber shift in regenerating muscle fibers remains unclear. Furthermore, it is unclear as to which factors determine skeletal muscle fiber types in regenerating muscle fibers. Previous studies showed that CTX-induced muscle damage resulted in a temporary hypoxic condition, indicating that hypoxia-inducible factor (HIF)-1α may be involved in muscle fiber type transition. Stabilization of HIF-1α has been shown to result in muscle fiber type transition toward slow-twitch phenotype through the calcineurin/nuclear factor activated T cell 1 (NFATc1) signaling pathway. Therefore, the aim of the present study was to determine whether the calcineurin/NFATc1 pathway is a key mediator of skeletal muscle fiber type transition during muscle regeneration. We found that CTX-induced muscle damage resulted in transient ischemia and HIF-1α expression in skeletal muscle. Additionally, it shifted the muscle fiber type proportion toward a slow-twitch phenotype in the soleus muscle (37.5% in the control muscle vs. 61.3% in the damaged muscle; p < 0.01) three weeks after muscle damage. Moreover, the NFATc1 protein levels increased in damaged muscle, and blockage of the calcineurin/NFATc1 signaling pathway by tacrolimus (FK-506) treatment substantially decreased the number of slow-twitch muscle fibers in the soleus muscle. This study demonstrated that CTX-induced muscle injury results in transient ischemia in hind limb muscle and stabilizes HIF-1α. Moreover, muscle damage increased oxidative phenotype muscle fibers through the calcineurin/NFATc1 signaling pathway during muscle regeneration.


Calcineurin , NFI Transcription Factors , Calcineurin/metabolism , NFI Transcription Factors/metabolism , T-Lymphocytes/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Signal Transduction , Tacrolimus/pharmacology , Muscle Fibers, Fast-Twitch/metabolism
4.
Microvasc Res ; 148: 104511, 2023 07.
Article En | MEDLINE | ID: mdl-36822367

Immune checkpoint inhibitor therapy has been attracting attention as a new cancer treatment and is likely to be widely used in combination with radiotherapy. Therefore, examination of the effects of X-ray irradiation on sentinel lymph nodes and lymphatic vessels, which are involved in antigen presentation, is important for therapy. The hindlimbs of mice were irradiated with X-rays (total radiation doses: 2, 10, and 30 Gy), and X-ray computed tomography (CT) imaging was performed using 15-nm or 2-nm gold nanoparticles (AuNPs) as contrast agents on days 7, 14, and 28 after irradiation to evaluate the diameter of the collecting lymph vessels and lymph flow within the irradiated area. X-ray CT imaging data using 15-nm AuNPs on day 28 after irradiation showed that the diameter of the collecting lymph vessels was significantly larger in all irradiated groups compared to the control group (p ≤ 0.01). CT imaging with 2-nm AuNPs showed that lymphatic drainage was significantly reduced in the lymph nodes irradiated with 10 Gy and 30 Gy compared to the lymph nodes irradiated with 2 Gy (p ≤ 0.05). Additionally, immunohistochemical analyses were conducted to evaluate the area density and morphology of high endothelial venules (HEVs) in the lymph nodes, which are important vessels for naive T cells to enter the lymph nodes. The expression level of MECA-79, which specifically localized to HEVs, was significantly decreased in the 10 Gy and 30 Gy irradiation groups compared to the control group (p ≤ 0.05). There was a significant decrease in normal HEV morphology (p ≤ 0.05) and a significant increase in abnormal HEV morphology (p ≤ 0.05) in all irradiated groups. These results also showed that X-ray irradiation induced a time- and radiation dose-dependent increase in the diameter of the collecting lymph vessels, stagnation of intralymphatic lymph flow, and a reduction in the area density of HEVs and their abnormal morphology, demonstrating that X-ray irradiation affected the immune responses. Therefore, these findings suggest that X-ray irradiation to lymph nodes may impair the opportunity for antigen presentation in the lymph nodes, which is the key to cancer immunity, and that for this reason, it is important to carefully plan irradiation of sentinel lymph nodes and develop treatment strategies according to future treatment options.


Lymphatic Vessels , Metal Nanoparticles , Animals , Mice , X-Rays , Gold , Lymphatic Metastasis/pathology , Lymph Nodes/pathology , Lymph Nodes/radiation effects , Lymphatic Vessels/diagnostic imaging , Immunity
5.
Cancer Sci ; 113(12): 4230-4243, 2022 Dec.
Article En | MEDLINE | ID: mdl-36082621

Breast cancer gene 1 (BRCA1) plays roles in DNA repair and centrosome regulation and is involved in DNA damage-induced centrosome amplification (DDICA). Here, the centrosomal localization of BRCA1 and the kinases involved in centrosome duplication were analyzed in each cell cycle phase after treatment with DNA crosslinker cisplatin (CDDP). CDDP treatment increased the centrosomal localization of BRCA1 in early S-G2 phase. BRCA1 contributed to the increased centrosomal localization of Aurora A in S phase and that of phosphorylated Polo-like kinase 1 (PLK1) in late S phase after CDDP treatment, resulting in centriole disengagement and overduplication. The increased centrosomal localization of BRCA1 and Aurora A induced by CDDP treatment involved the nuclear export of BRCA1 and BRCA1 phosphorylation by ataxia telangiectasia mutated (ATM). Patient-derived variants and mutations at phosphorylated residues of BRCA1 suppressed the interaction between BRCA1 and Aurora A, as well as the CDDP-induced increase in the centrosomal localization of BRCA1 and Aurora A. These results suggest that CDDP induces the phosphorylation of BRCA1 by ATM in the nucleus and its transport to the cytoplasm, thereby promoting the centrosomal localization Aurora A, which phosphorylates PLK1. The function of BRCA1 in the translocation of the DNA damage signal from the nucleus to the centrosome to induce centrosome amplification after CDDP treatment might support its role as a tumor suppressor.


Aurora Kinase A , BRCA1 Protein , Centrosome , DNA Damage , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Centrosome/metabolism , G2 Phase , Phosphorylation , Aurora Kinase A/metabolism
6.
Colloids Surf B Biointerfaces ; 203: 111732, 2021 Jul.
Article En | MEDLINE | ID: mdl-33839472

The technology to accurately image the morphology of tumor vessels with X-ray contrast agents is important to clarify mechanisms underlying tumor progression and evaluate the efficacy of chemotherapy. However, in clinical practice, iodine-based contrast agents present problems such as short blood retention owing to a high clearance ability and insufficient X-ray absorption capacity when compared with other high atomic number elements. To resolve these issues, gold nanoparticles (AuNPs), with a high atomic number, have attracted a great deal of attention as contrast agents for angiography, and have been employed in small animal models. Herein, we developed novel contrast agents using AuNPs and captured changes in tumor vessel morphology with time using X-ray computed tomography (CT). First, glutathione-supported single nanometer-sized AuNPs (sAu/GSH) (diameter, 2.2 nm) were fabricated using tetrakis(hydroxymethyl)phosphonium chloride as a reducing agent. The sAu/GSH particles were intravenously injected into mice, remained in vessels for a few minutes, and were then excreted by the kidneys after 24 h, similar to the commercial contrast agent iopamidol. Next, the Au/GSH and lactoferrin (sAu/GSH-LF) (long axis size, 17.3 nm) complex was produced by adding lactoferrin to the sAu/GSH solution under the influence of a condensing agent. On intravenously administering sAu/GSH-LF to mice, the blood retention time was 1-3 h, which was considerably longer than that observed with iopamidol and sAu/GSH. Moreover, we succeeded in imaging morphological changes in identical tumor vessels for several days using X-ray CT with sAu/GSH-LF.


Gold , Metal Nanoparticles , Animals , Blood Vessels/diagnostic imaging , Computed Tomography Angiography , Contrast Media , Lactoferrin , Mice , Tomography, X-Ray Computed
7.
Med Oncol ; 38(6): 60, 2021 Apr 21.
Article En | MEDLINE | ID: mdl-33881631

The evaluation of angiogenesis inhibitors requires the analysis of the precise structure and function of tumor vessels. The anti-angiogenic agents lenvatinib and sorafenib are multi-target tyrosine kinase inhibitors that have been approved for the treatment of hepatocellular carcinoma (HCC). However, the different effects on tumor vasculature between lenvatinib and sorafenib are not well understood. In this study, we analyzed the effects of both drugs on vascular structure and function, including vascular normalization, and investigated whether the normalization had a positive effect on a combination therapy with the drugs and radiation using micro X-ray computed tomography with gold nanoparticles as a contrast agent, as well as immunohistochemical analysis and interstitial fluid pressure (IFP) measurement. In mice subcutaneously transplanted with mouse HCC cells, treatment with lenvatinib or sorafenib for 14 days inhibited tumor growth and reduced the tumor vessel volume density. However, analysis of integrated data on vessel density, rates of pericyte-covering and perfused vessels, tumor hypoxia, and IFP measured 4 days after drug treatment showed that treatment with 3 mg/kg of lenvatinib significantly reduced the microvessel density and normalized tumor vessels compared to treatment with 50 mg/kg of sorafenib. These results showed that lenvatinib induced vascular normalization and improved the intratumoral microenvironment in HCC tumors earlier and more effectively than sorafenib. Moreover, such changes increased the radiosensitivity of tumors and enhanced the effect of lenvatinib and radiation combination therapy, suggesting that this combination therapy is a powerful potential application against HCC.


Angiogenesis Inhibitors/pharmacology , Carcinoma, Hepatocellular/blood supply , Liver Neoplasms, Experimental/blood supply , Phenylurea Compounds/pharmacology , Quinolines/pharmacology , Animals , Blood Vessels/diagnostic imaging , Blood Vessels/drug effects , Blood Vessels/pathology , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/radiotherapy , Female , Liver Neoplasms, Experimental/diagnostic imaging , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/radiotherapy , Mice, Inbred BALB C , Sorafenib/pharmacology , Tumor Hypoxia/drug effects , X-Ray Microtomography
8.
Gan To Kagaku Ryoho ; 48(2): 170-175, 2021 Feb.
Article Ja | MEDLINE | ID: mdl-33597352

Fluorescence imaging is a very useful method for visualizing molecules and cells, but when tissues are measured", decrease in resolution due to increased scattering and absorption of light in proportion to tissue thickness (problem 1)" and "decrease in signal to noise(S/N)ratio of positive signal due to tissue autofluorescence(problem 2)"are problems to be solved. In this paper, to develop a technology to improve the analysis accuracy of drug efficacy mechanisms in preclinical trial of drug discovery, we performed development of a supporting technology for drug discovery of antibody drug conjugates by imaging living tumor tissues, while solving problem 1. This technology is expected to lead to an improvement in the success rate of clinical trials. Next, to develop a diagnostic method to predict the response to neoadjuvant chemotherapy with antibody drugs for breast cancer, we performed development of fluorescence imaging of pathological tissues using fluorescent nanoparticles with ultra-high brightness, while solving problem 2. This diagnostic technology makes it possible to evaluate the expression level of the target protein of antibody drug with high quantitative and wide range sensitivity. This improved the accuracy of drug efficacy prediction. Therefore, patients who are expected to have a low drug efficacy will be able to select anticancer drugs with different mechanisms of action. These results of this study showed the reduction of drug discovery costs and improvement of individualized medicine. Thus, this study will greatly contribute to the development of precision medicine.


Nanoparticles , Pharmaceutical Preparations , Antibodies , Humans , Optical Imaging , Technology
9.
Transl Oncol ; 13(6): 100764, 2020 Jun.
Article En | MEDLINE | ID: mdl-32403030

Anticancer drug efficacy varies because the delivery of drugs within tumors and tumor responses are heterogeneous; however, these features are often more homogenous in vitro. This difference makes it difficult to accurately determine drug efficacy. Therefore, it is important to use living tumor tissues in preclinical trials to observe the heterogeneity in drug distribution and cell characteristics in tumors. In the present study, to accurately evaluate the efficacy of an antibody-drug conjugate (ADC) containing a microtubule inhibitor, we established a cell line that expresses a fusion of end-binding protein 1 and enhanced green fluorescent protein that serves as a microtubule plus-end-tracking protein allowing the visualization of microtubule dynamics. This cell line was xenografted into mice to create a model of living tumor tissue. The tumor cells possessed a greater number of microtubules with plus-ends, a greater number of meandering microtubules, and a slower rate of microtubule polymerization than the in vitro cells. In tumor tissues treated with fluorescent dye-labeled ADCs, heterogeneity was observed in the delivery of the drug to tumor cells, and microtubule dynamics were inhibited in a concentration-dependent manner. Moreover, a difference in drug sensitivity was observed between in vitro cells and tumor cells; compared with in vitro cells, tumor cells were more sensitive to changes in the concentration of the ADC. This study is the first to simultaneously evaluate the delivery and intracellular efficacy of ADCs in living tumor tissue. Accurate evaluation of the efficacy of ADCs is important for the development of effective anticancer drugs.

10.
Cancers (Basel) ; 11(4)2019 Apr 12.
Article En | MEDLINE | ID: mdl-31013810

In addition to genomic signaling, Estrogen receptor alpha (ERα) is associated with cell proliferation and survival through extranuclear signaling contributing to endocrine therapy (ET) resistance. However, the relationship between extranuclear ERα and ET resistance has not been extensively studied. We sought to measure extranuclear ERα expression by immunohistochemistry using phosphor-integrated dots (IHC-PIDs) and to assess its predictive value for ET resistance. After quantitative detection of ERα by IHC-PIDs in vitro, we developed "the nearest-neighbor method" to calculate the extranuclear ERα. Furthermore, tissue sections from 65 patients with HR+/HER2- BC were examined by IHC-PIDs, and the total ERα, nuclear ERα, extranuclear ERα PIDs score, and ratio of extranuclear-to-nuclear ERα (ENR) were measured using the novel method. We demonstrate that quantification of ERα using IHC-PIDs exhibited strong correlations to real-time qRT-PCR (r2 = 0.94) and flow cytometry (r2 = 0.98). High ERα ENR was significantly associated with poor overall survival (p = 0.048) and disease-free survival (DFS) (p = 0.007). Multivariate analysis revealed that the ERα ENR was an independent prognostic factor for DFS [hazard ratio, 3.8; 95% CI, 1.4-11.8; p = 0.006]. Our automated measurement has high accuracy to localize and assess extranuclear ERα. A high ERα ENR in HR+/HER2- BC indicates decreased likelihood of benefiting from ET.

11.
Biochem Biophys Res Commun ; 508(4): 1093-1100, 2019 01 22.
Article En | MEDLINE | ID: mdl-30551875

Previous studies showed that gold nanoparticles (AuNPs) are useful radiosensitizers which optimize radiation therapy under low-dose radiation. However, the mechanisms of AuNP radiosensitization, including the amount and localization of the AuNPs interacting with cancer cells, has not yet been quantified. To answer these questions, we prepared AuNPs conjugated with anti-human epidermal growth factor receptor type 2 (HER2) antibody via polyethylene glycol (PEG) chains (AuNP-PEG-HER2ab). AuNP-PEG-HER2ab specifically bound to the HER2-expressing cancer cells and entered the cells via endocytosis. Whether endocytosis of AuNP-PEG-HER2ab occurred had no effect on radiosensitization efficacy by AuNP-PEG-HER2ab in vitro. The radiosensitization efficacy in vitro depended on dose of AuNP-PEG-HER2ab or dose of X-ray. Moreover, AuNP-PEG-HER2ab administrated into tumor-bearing mice was localized to both the periphery of the tumor tissue and near the nuclei in cancer cells in tumor deep tissue. The localization of AuNP-PEG-HER2ab in tumor tissues was important factors for in vivo powerful radiosensitization efficacy.


Gold/chemistry , Metal Nanoparticles/chemistry , Radiation-Sensitizing Agents/therapeutic use , Animals , Antibodies/metabolism , Cell Line, Tumor , Dose-Response Relationship, Radiation , Humans , Metal Nanoparticles/ultrastructure , Mice , Polyethylene Glycols/chemistry , Receptor, ErbB-2/metabolism
12.
Angew Chem Int Ed Engl ; 57(6): 1491-1496, 2018 02 05.
Article En | MEDLINE | ID: mdl-29282854

CRISPR/Cas9 system is a powerful toolbox for gene editing. However, the low delivery efficiency is still a big hurdle impeding its applications. Herein, we report a strategy to deliver Cas9-sgPlk-1 plasmids (CP) by a multifunctional vehicle for tumor therapy. We condensed CPs on TAT peptide-modified Au nanoparticles (AuNPs/CP, ACP) via electrostatic interactions, and coated lipids (DOTAP, DOPE, cholesterol, PEG2000-DSPE) on the ACP to form lipid-encapsulated, AuNPs-condensed CP (LACP). LACP can enter tumor cells and release CP into the cytosol by laser-triggered thermo-effects of the AuNPs; the CP can enter nuclei by TAT guidance, enabling effective knock-outs of target gene (Plk-1) of tumor (melanoma) and inhibition of the tumor both in vitro and in vivo. This AuNPs-condensed, lipid-encapsulated, and laser-controlled delivery system provides a versatile method for high efficiency CRISPR/Cas9 delivery and targeted gene editing for treatment of a wide spectrum of diseases.


CRISPR-Associated Protein 9/genetics , Gold/chemistry , Lipids/chemistry , Melanoma, Experimental/therapy , Metal Nanoparticles/chemistry , Plasmids/therapeutic use , Animals , Apoptosis/radiation effects , Cell Cycle Proteins/genetics , Cell Line, Tumor , Gene Transfer Techniques , Glutathione/chemistry , Humans , Hyperthermia, Induced , Lasers , Melanoma, Experimental/pathology , Mice , Microscopy, Confocal , Peptide Fragments/chemistry , Plasmids/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , RNA, Guide, Kinetoplastida/genetics , Surface Plasmon Resonance , Polo-Like Kinase 1
13.
Sci Rep ; 7(1): 7509, 2017 08 08.
Article En | MEDLINE | ID: mdl-28790306

The quantitative sensitivity and dynamic range of conventional immunohistochemistry (IHC) with 3,3'-diaminobenzidine (IHC-DAB) used in pathological diagnosis in hospitals are poor, because enzyme activity can affect the IHC-DAB chromogenic reaction. Although fluorescent IHC can effectively increase the quantitative sensitivity of conventional IHC, tissue autofluorescence interferes with the sensitivity. Here, we created new fluorescent nanoparticles called phosphor-integrated dots (PIDs). PIDs have 100-fold greater brightness and a more than 300-fold greater dynamic range than those of commercially available fluorescent nanoparticles, quantum dots, whose fluorescence intensity is comparable to tissue autofluorescence. Additionally, a newly developed image-processing method enabled the calculation of the PID particle number in the obtained image. To quantify the sensitivity of IHC using PIDs (IHC-PIDs), the IHC-PIDs method was compared with fluorescence-activated cell sorting (FACS), a method well suited for evaluating total protein amount, and the two values exhibited strong correlation (R = 0.94). We next applied IHC-PIDs to categorize the response to molecular target-based drug therapy in breast cancer patients. The results suggested that the PID particle number estimated by IHC-PIDs of breast cancer tissues obtained from biopsy before chemotherapy can provide a score for predicting the therapeutic effect of the human epidermal growth factor receptor 2-targeted drug trastuzumab.


Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Diagnostic Imaging/methods , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Rhodamines/chemistry , 3,3'-Diaminobenzidine/chemistry , Antibodies/chemistry , Antineoplastic Agents, Immunological/therapeutic use , Biopsy , Biotin/chemistry , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Diagnostic Imaging/instrumentation , Female , Fluorescence , Gene Expression , Humans , Imides/chemistry , Immunohistochemistry/methods , Middle Aged , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Particle Size , Perylene/analogs & derivatives , Perylene/chemistry , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Streptavidin/chemistry , Trastuzumab/therapeutic use
14.
Ann Nucl Med ; 31(7): 563-569, 2017 Aug.
Article En | MEDLINE | ID: mdl-28639126

PURPOSE: To suppress partial volume effect (PVE) in brain PET, there have been many algorithms proposed. However, each methodology has different property due to its assumption and algorithms. Our aim of this study was to investigate the difference among partial volume correction (PVC) method for tau and amyloid PET study. METHODS: We investigated two of the most commonly used PVC methods, Müller-Gärtner (MG) and geometric transfer matrix (GTM) and also other three methods for clinical tau and amyloid PET imaging. One healthy control (HC) and one Alzheimer's disease (AD) PET studies of both [18F]THK5351 and [11C]PIB were performed using a Eminence STARGATE scanner (Shimadzu Inc., Kyoto, Japan). All PET images were corrected for PVE by MG, GTM, Labbé (LABBE), Regional voxel-based (RBV), and Iterative Yang (IY) methods, with segmented or parcellated anatomical information processed by FreeSurfer, derived from individual MR images. PVC results of 5 algorithms were compared with the uncorrected data. RESULTS: In regions of high uptake of [18F]THK5351 and [11C]PIB, different PVCs demonstrated different SUVRs. The degree of difference between PVE uncorrected and corrected depends on not only PVC algorithm but also type of tracer and subject condition. CONCLUSION: Presented PVC methods are straight-forward to implement but the corrected images require careful interpretation as different methods result in different levels of recovery.


Aminopyridines , Amyloid/metabolism , Benzothiazoles , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography , Quinolines , tau Proteins/metabolism , Aged, 80 and over , Aniline Compounds , Female , Humans , Male , Thiazoles
15.
Biochem Biophys Res Commun ; 484(2): 318-322, 2017 03 04.
Article En | MEDLINE | ID: mdl-28126339

This study described the preparation of silica-coated Au nanorods (AuNR/SiO2) in a colloidal solution, assessed their property of photothermal conversion, and investigated their ability to kill cancer cells using photothermal conversion. Au-seed nanoparticles were produced by reducing hydrogen tetrachloroaurate (HAuCl4) with sodium borohydride (NaBH4) in aqueous n-hexadecyltrimethylammonium bromide (CTAB) solution. AuNRs were then fabricated by reducing HAuCl4 and silver nitrate (AgNO3) with l-ascorbic acid in the aqueous CTAB solution in the presence of Au-seed nanoparticles. The as-prepared AuNRs were washed by a process composed mainly of centrifugation to remove the CTAB. The washed AuNRs were coated with silica by mixing the AuNR colloidal solution, an aqueous solution of (3-aminopropyl)trimethoxysilane, and tetraethylorthosilicate/ethanol solution with a water/ethanol solution. We found that the addition of AuNR/SiO2 in water, in mice, and in a culture medium with cancer cells, followed by irradiation with a laser, cause an increase in temperature, demonstrating that AuNR/SiO2 have the ability of photothermal conversion. In addition, the cancer cells in the culture medium were found to be killed due to the increase in temperature caused by the photothermal conversion.


Gold/chemistry , Nanotubes/chemistry , Temperature , Animals , Cell Line, Tumor , Cetrimonium , Cetrimonium Compounds/chemistry , Mice , Microscopy, Electron, Transmission
16.
J Nucl Med ; 58(8): 1285-1292, 2017 08.
Article En | MEDLINE | ID: mdl-28062596

Our study aimed to develop a method to mathematically predict the kinetic parameters K1 (influx rate constant), k2 (efflux rate constant), and BPND (nondisplaceable binding potential) of amyloid PET tracers and obtain SUV ratios (SUVRs) from predicted time-activity curves of target and reference regions. Methods: We investigated 10 clinically applied amyloid PET radioligands: 11C-Pittsburgh compound B, 11C-BF-227, 11C-AZD2184, 11C-SB-13, 18F-FACT, 18F-florbetapir, 18F-florbetaben, 18F-flutemetamol, 18F-FDDNP, and 18F-AZD4694. For each tracer, time-activity curves of both target and reference regions were generated using a simplified 1-tissue-compartment model, with an arterial plasma input function and the predicted kinetic parameters. K1, k2, and BPND were derived from the lipophilicity (logP), apparent volume, free fraction in plasma, free fraction in tissue, dissociation constant, and density of amyloid ß using biomathematic modeling. Density was fixed at 3 nM to represent healthy control conditions and 50 nM to represent severe Alzheimer disease (AD). Predicted SUVRs for the healthy and AD groups were then obtained by dividing the integrated time-activity curve of the target region by that of the reference region. To validate the presented method, the predicted K1, k2, BPND, and SUVR for the healthy and AD groups were compared with the respective clinically observed values. Results: The correlation between predicted and clinical kinetic parameters had an R2 value of 0.73 for K1 in the healthy group, 0.71 for K1 in the AD group, 0.81 for k2 in the healthy group, 0.85 for k2 in the AD group, and 0.63 for BPND in the AD group. The regression relationship between the predicted SUVR (y) and the clinical SUVR (x) for the healthy and the AD groups was y = 2.73x - 2.11 (R2 = 0.72). Conclusion: The proposed method showed a good correlation between predicted and clinical SUVR for the 10 clinically applied amyloid tracers.


Amyloid/metabolism , Models, Biological , Positron-Emission Tomography , Radiopharmaceuticals/metabolism , Biological Transport , Drug Discovery , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Radiopharmaceuticals/chemistry
17.
Sci Technol Adv Mater ; 17(1): 387-397, 2016.
Article En | MEDLINE | ID: mdl-27877890

Contrast agents are often used to enhance the contrast of X-ray computed tomography (CT) imaging of tumors to improve diagnostic accuracy. However, because the iodine-based contrast agents currently used in hospitals are of low molecular weight, the agent is rapidly excreted from the kidney or moves to extravascular tissues through the capillary vessels, depending on its concentration gradient. This leads to nonspecific enhancement of contrast images for tissues. Here, we created gold (Au) nanoparticles as a new contrast agent to specifically image tumors with CT using an enhanced permeability and retention (EPR) effect. Au has a higher X-ray absorption coefficient than does iodine. Au nanoparticles were supported with polyethylene glycol (PEG) chains on their surface to increase the blood retention and were conjugated with a cancer-specific antibody via terminal PEG chains. The developed Au nanoparticles were injected into tumor-bearing mice, and the distribution of Au was examined with CT imaging, transmission electron microscopy, and elemental analysis using inductively coupled plasma optical emission spectrometry. The results show that specific localization of the developed Au nanoparticles in the tumor is affected by a slight difference in particle size and enhanced by the conjugation of a specific antibody against the tumor.

18.
Cancer Med ; 5(10): 2813-2824, 2016 10.
Article En | MEDLINE | ID: mdl-27666577

Overexpression of HER2 is one of the major causes of breast cancer, and therefore precise diagnosis of its protein expression level is important. However, current methods estimating the HER2-expression level are insufficient due to problem with the lack of quantification. This might result in a gap between diagnostics and therapeutics targeting HER2. Therefore, a new effective diagnostic method is needed. We developed a new immunohistochemical (IHC) technique with quantum dots (QD)-conjugated trastuzumab using single-particle imaging to quantitatively measure the HER2 expression level. Tissues from 37 breast cancer patients with available detailed clinical information were tested by IHC with QDs (IHC-QD) and the correlation with IHC with 3,3'-diaminobenzidine (DAB), fluorescence in situ hybridization (FISH), and IHC-QD was examined. The number of QD-conjugated trastuzumab particles binding specifically to a cancer cell was precisely calculated as the IHC-QD score. The IHC-QD score in 37 cases was correlated proportionally with the score of HER2 gene copy number as assessed by FISH (R = 0.83). When HER2 positivity was judged to be positive, the IHC-QD score with our cut-off level was exactly concordant with the FISH score with a cut-off value of 2.0. Furthermore, IHC-QDs score and time to progression (TTP) of trastuzumab therapy were well correlated in HER2-positive cases (R = 0.69). Conversely, the correlation between FISH score and TTP was not observed. We developed a precisely quantitative IHC method using trastuzumab-conjugated QDs and single-particle imaging analysis and propose the possibility of using IHC-QDs score as a predictive factor for trastuzumab therapy.


Breast Neoplasms/diagnosis , Receptor, ErbB-2/metabolism , Single Molecule Imaging/methods , Trastuzumab/pharmacology , Adult , Aged , Aged, 80 and over , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Gene Amplification , Gene Dosage , Humans , In Situ Hybridization, Fluorescence/methods , Middle Aged , Protein Binding , Quantum Dots , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Sensitivity and Specificity
19.
Sci Rep ; 5: 14322, 2015 Sep 22.
Article En | MEDLINE | ID: mdl-26392299

In breast cancer, the prognosis of human epidermal growth factor receptor 2 (HER2)-positive patients (20-25%) has been dramatically improved by the clinical application of the anti-HER2 antibody drugs trastuzumab and pertuzumab. However, the clinical outcomes of HER2-negative cases with a poor prognosis have not improved, and novel therapeutic antibody drugs or diagnostic molecular markers of prognosis are urgently needed. Here, we targeted protease-activated receptor 1 (PAR1) as a new biomarker for HER2-negative patients. The developed anti-PAR1 antibody inhibited PAR1 activation by matrix metalloprotease 1 and thereby prevented cancer-cell migration and invasion. To estimate PAR1 expression levels in HER2-negative patient tissues using the antibody, user-friendly immunohistochemistry with fluorescence nanoparticles or quantum dots (QDs) was developed. Previously, immunohistochemistry with QDs was affected by tissue autofluorescence, making quantitative measurement extremely difficult. We significantly improved the quantitative sensitivity of immunohistochemistry with QDs by using an autofluorescence-subtracted image and single-QD imaging. The immunohistochemistry showed that PAR1 expression was strongly correlated with relapse-free survival time in HER2-negative breast cancer patients. Therefore, the developed anti-PAR1 antibody is a strong candidate for use as an anticancer drug and a prognostic biomarker for HER2-negative patients.


Breast Neoplasms/diagnosis , Diagnostic Imaging/methods , Neoplasm Recurrence, Local/diagnosis , Quantum Dots , Adult , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/surgery , Cell Line, Tumor , Cell Movement/drug effects , Female , Humans , Immunohistochemistry , Matrix Metalloproteinase 1/metabolism , Middle Aged , Neoplasm Staging , Postoperative Care , Prognosis , Receptor, ErbB-2/metabolism , Receptor, PAR-1/antagonists & inhibitors , Receptor, PAR-1/immunology
20.
Nucl Med Biol ; 42(9): 734-44, 2015 Sep.
Article En | MEDLINE | ID: mdl-26093494

INTRODUCTION: The purpose of this study was to compare two amyloid imaging agents, [(11)C]BF227 and [(18)F]FACT (derivative from [(11)C]BF227) through quantitative pharmacokinetics analysis in human brain. METHODS: Positron emission tomography studies were performed on six elderly healthy control (HC) subjects and seven probable Alzheimer's disease (AD) patients with [(11)C]BF227 and 10 HC subjects and 10 probable AD patients with [(18)F]FACT. Data from nine regions of interest were analyzed by several approaches, namely non-linear least-squared fitting methods with arterial input functions (one-tissue compartment model(1TCM), two-tissue compartment model (2TCM)), Logan plot, and linearized methods with reference region (Reference Logan plot (RefLogan), MRTM0, MRTM2). We also evaluated SUV and SUVR for both tracers. The parameters estimated by several approaches were compared between two tracers for detectability of differences between HC and AD patients. RESULTS: For [(11)C]BF227, there were no significant difference of VT (2TCM, 1TCM) and SUV in all regions (Student t-test; p<0.05) and significant differences in the DVRs (Logan, RefLogan, and MRTM2) and SUVRs in six neocortical regions (p<0.05) between the HC and AD groups. For [(18)F]FACT, significant differences in DVRs (RefLogan, MRTM0, and MRTM2) were observed in more than four neocortical regions between the HC and AD groups (p<0.05), and the significant differences were found in SUVRs for two neocortical regions (inferior frontal coretex and lateral temporal coretex). Our results showed that both tracers can clearly distinguish between HC and AD groups although the pharmacokinetics and distribution patterns in brain for two tracers were substantially different. CONCLUSION: This study revealed that although the PET amyloid imaging agents [(11)C]BF227 and [(18)F]FACT have similar chemical and biological properties, they have different pharmacokinetics, and caution must be paid for usage of the tracers.


Amyloid beta-Peptides/metabolism , Benzoxazoles/pharmacokinetics , Models, Biological , Molecular Imaging/methods , Neocortex/metabolism , Positron-Emission Tomography/methods , Thiazoles/pharmacokinetics , Computer Simulation , Humans , Metabolic Clearance Rate , Neocortex/diagnostic imaging , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
...