Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Korean J Physiol Pharmacol ; 27(4): 383-398, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37386836

RESUMEN

Dihydroaustrasulfone alcohol (DA), the synthetic precursor of a natural compound (austrasulfone) isolated from the coral species Cladiella australis, has shown cytotoxic effects against cancer cells. However, it is unknown whether DA has antitumor effects on nasopharyngeal carcinoma (NPC). In this study, we determined the antitumor effects of DA and investigated its mechanism of action on human NPC cells. The MTT assay was used to determine the cytotoxic effect of DA. Subsequently, apoptosis and reactive oxygen species (ROS) analyses were performed by using flow cytometry. Apoptotic and PI3K/AKT pathway-related protein expression was determined using Western blotting. We found that DA significantly reduced the viability of NPC-39 cells and determined that apoptosis was involved in DA-induced cell death. The activity of caspase-9, caspase-8, caspase-3, and PARP induced by DA suggested caspase-mediated apoptosis in DA-treated NPC-39 cells. Apoptosis-associated proteins (DR4, DR5, FAS) in extrinsic pathways were also elevated by DA. The enhanced expression of proapoptotic Bax and decreased expression of antiapoptotic BCL-2 suggested that DA mediated mitochondrial apoptosis. DA reduced the expression of pPI3K and p-AKT in NPC-39 cells. DA also reduced apoptosis after introducing an active AKT cDNA, indicating that DA could block the PI3K/AKT pathway from being activated. DA increased intracellular ROS, but N-acetylcysteine (NAC), a ROS scavenger, reduced DA-induced cytotoxicity. NAC also reversed the chances in pPI3K/AKT expression and reduced DA-induced apoptosis. These findings suggest that ROS-mediates DA-induced apoptosis and PI3K/AKT signaling inactivation in human NPC cells.

2.
Anticancer Res ; 40(9): 4947-4960, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32878783

RESUMEN

BACKGROUND/AIM: This study aimed to investigate the anticancer effects and potential mechanisms of sclareol in a human small cell lung carcinoma (SCLC) cell line. MATERIALS AND METHODS: Cell viability was determined by the MTT assay. Cell cycle, apoptosis and caspase activity were evaluated by flow cytometry. Cell cycle and DNA damage related protein expression was determined by western blotting. In vivo evaluation of sclareol was carried out in xenografted tumor mice models. RESULTS: Sclareol significantly reduced cell viability, induced G1 phase arrest and subsequently triggered apoptosis in H1688 cells. In addition, this sclareol-induced growth arrest was associated with DNA damage as indicated by phosphorylation of H2AX, activation of ATR and Chk1. Moreover, in vivo evaluation of sclareol showed that it could inhibit tumor weight and volume in a H1688 xenograft model. CONCLUSION: Sclareol might be a novel and effective therapeutic agent for the treatment of SCLC patients.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diterpenos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Diterpenos/uso terapéutico , Femenino , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Carcinoma Pulmonar de Células Pequeñas/patología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA