Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Plant Sci ; 15: 1374925, 2024.
Article En | MEDLINE | ID: mdl-38606078

Bud sport is a common and stable somatic variation in perennial fruit trees, and often leads to significant modification of fruit traits and affects the breeding value. To investigate the impact of bud sport on the main metabolites in the fruit of white-fleshed loquat, we conducted a multi-omics analysis of loquat fruits at different developmental stages of a white-fleshed bud sport mutant of Dongting loquat (TBW) and its wild type (TBY). The findings from the detection of main fruit quality indices and metabolites suggested that bud sport resulted in a reduction in the accumulation of carotenoids, fructose, titratable acid and terpenoids at the mature stage of TBW, while leading to the accumulation of flavonoids, phenolic acids, amino acids and lipids. The comparably low content of titratable acid further enhances the balanced and pleasent taste profile of TBW. Expression patterns of differentially expressed genes involved in fructose metabolism exhibited a significant increase in the expression level of S6PDH (EVM0006243, EVM0044405) prior to fruit maturation. The comparison of protein sequences and promoter region of S6PDH between TBY and TBW revealed no structural variations that would impact gene function or expression, indicating that transcription factors may be responsible for the rapid up-regulation of S6PDH before maturation. Furthermore, correlation analysis helped to construct a comprehensive regulatory network of fructose metabolism in loquat, including 23 transcription factors, six structural genes, and nine saccharides. Based on the regulatory network and existing studies, it could be inferred that transcription factors such as ERF, NAC, MYB, GRAS, and bZIP may promote fructose accumulation in loquat flesh by positively regulating S6PDH. These findings improve our understanding of the nutritional value and breeding potential of white-fleshed loquat bud sport mutant, as well as serve as a foundation for exploring the genes and transcription factors that regulate fructose metabolism in loquat.

2.
Plants (Basel) ; 8(10)2019 Sep 28.
Article En | MEDLINE | ID: mdl-31569422

In this study, we report the isolation and purification of protoplasts from Chinese kale (Brassica oleracea var. alboglabra) hypocotyls, and their transient gene expression transformation and subcellular localization of BaMYB75 (Bol042409). The upshot is that the vintage protocol included 5-d hypocotyls that were enzymatically hydrolyzed for 8 h in enzyme solution (3.0% cellulase, 0.5% pectolase, and 0.5 M mannitol), and the protoplasts were purified by precipitation. The total yield of protoplasts was 8 × 105 protoplast g-1 fresh weight, and the protoplasts' viability was 90%. The maximum transformation efficiency obtained by using green fluorescent protein (GFP) as a detection gene was approximately 45% when the polyethylene glycol (PEG)4000 concentration was 40% and transformation time was 20 min. In addition, BaMYB75 was ultimately localized in the nucleus of Chinese kale hypocotyl protoplasts, verifying the validity and reliability of this transient transformation system. An effective and economical hypocotyl protoplast isolation, purification, and transformation system was established for Chinese kale in this study. This effectively avoided interference of chloroplast autofluorescence compared to using mesophyll cells, laying the foundation for future research in the molecular biology of Brassica vegetables.

3.
R Soc Open Sci ; 6(2): 182054, 2019 Feb.
Article En | MEDLINE | ID: mdl-30891304

The composition and content of glucosinolates were investigated in the edible parts (petioles, peel and flesh) of tuber mustard, bamboo shoots mustard and baby mustard by high-performance liquid chromatography to reveal the association between the different cooking methods and their glucosinolate profiles. Eight glucosinolates were identified from tuber mustard and baby mustard, including three aliphatic glucosinolates, four indole glucosinolates and one aromatic glucosinolate. Only six of the eight glucosinolates were detected in bamboo shoots mustard. The results show that the distribution and content of glucosinolates varied widely among the different tissues and species. The highest contents of glucosinolates in tuber mustard, bamboo shoots mustard and baby mustard were found in flesh, petioles and peel, respectively. The content of total glucosinolates ranged from 5.21 µmol g-1 dry weight in bamboo shoots mustard flesh to 25.64 µmol g-1 dry weight in baby mustard peel. Aliphatic glucosinolates were predominant in the three stem mustards, followed by indole and aromatic glucosinolates. Sinigrin was the predominant glucosinolate in the three stem mustards. Sinigrin content in tuber mustard was slightly higher than that in baby mustard and much higher than that in bamboo shoots mustard, suggesting that the pungent-tasting stem mustards contained more sinigrin. In addition, a principal components analysis showed that bamboo shoots mustard was distinguishable from the other two stem mustards. A variance analysis indicated that the glucosinolates were primarily influenced by a species × tissue interaction. The correlations among glucosinolates were also analysed.

...