Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 669: 835-843, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38749222

RESUMEN

Wearable drug delivery systems (DDS) have made significant advancements in the field of precision medicine, offering precise regulation of drug dosage, location, and timing. The performance qualities that wearable DDS has always strived for are simplicity, efficiency, and intelligence. This paper proposes a wearable dual-drug synergistic release patch. The patch is powered by a built-in magnesium battery and utilizes a hydrogel containing viologen-based hyperbranched polyamidoamine as both a cathode material and an integrated drug reservoir. This design allows for the simultaneous release of both dexamethasone and tannic acid, overcoming the limitations of monotherapy and ensuring effective synergy for on-demand therapy. In a mouse model with praziquimod-induced psoriasis, the patch demonstrated therapeutic efficacy at a low voltage. The inflammatory skin returned to normal after 5 days with the on-demand release of dual drugs. This work provides a promising treatment option considering its straightforward construction and the therapeutic advantages of dual-drug synergy.


Asunto(s)
Dexametasona , Psoriasis , Dispositivos Electrónicos Vestibles , Animales , Ratones , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Dexametasona/administración & dosificación , Dexametasona/farmacología , Preparaciones de Acción Retardada/química , Taninos/química , Taninos/farmacología , Liberación de Fármacos , Hidrogeles/química , Sistemas de Liberación de Medicamentos , Parche Transdérmico , Poliaminas
2.
Angew Chem Int Ed Engl ; 63(18): e202401629, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38385954

RESUMEN

Aqueous zinc-ion batteries (ZIBs) are safe and economical for grid applications. However, current ZIBs have limitations in terms of inferior capacity and low output voltage, which are hampered by the electrolyte applicability of the Zn2+ hosts. In this study, we propose a novel organic cathode design strategy with a bifunctional potential region. This polymeric Zn2+ host combines the conjugated polyaniline backbone to tune the molecular surface pH and [Fe(CN)6]3-/4- redox couple for high output voltage and capacity. The polyaniline doped with ferricyanide (PAF) electrode exhibits two forms of charge storage in ZIBs: proton-assisted Zn2+ doping below 1.2 V (mechanism I), and [Fe(CN)6]3-/4- redox pair above 1.8 V (mechanism II). Density functional theory calculations and in situ pH experiments demonstrated that the H+ doping process of mechanism I forms a localized pH regulation on the molecular chain surface, providing a favorable reaction environment for mechanism II. The Zn-polymer battery delivered an outstanding discharge capacity (405.2 mAh g-1) and high output voltage (1.8 V) in the Zn(CF3SO3)2 electrolyte. This study provides a new route for enhancing the structural stability of electrodes and overcoming the electrolyte limitations of ferricyanide in weakly acidic electrolytes.

3.
Small ; 19(12): e2205936, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36634970

RESUMEN

It remains a great challenge to design and manufacture battery-type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two-layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO-Co(OH)2 lamella on Cu-plated carbon cloth (named as CPCC@CuO@Co(OH)2 ). The unique structure brings the electrode a high specific capacity of 3620 mF cm-2 at 2 mA cm-2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E-Ef  = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH)2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH)2 //CC@AC shows high energy density of 127.7 W h kg-1 at 750.0 W kg-1 , remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...