Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Intervalo de año de publicación
1.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955379

RESUMEN

This study evaluated the treatment efficiency of two selected fillers and their combination for improving the water quality of aquaculture wastewater using a packed bed biofilm reactor (PBBR) under various process conditions. The fillers used were nanosheet (NS), activated carbon (AC), and a combination of both. The results indicated that the use of combined fillers and the hydraulic retention time (HRT) of 4 h significantly enhanced water quality in the PBBR. The removal rates of chemical oxygen demand, NO2-─N, total suspended solids(TSS), and chlorophyll a were 63.55%, 74.25%, 62.75%, and 92.85%, respectively. The microbiota analysis revealed that the presence of NS increased the abundance of microbial phyla associated with nitrogen removal, such as Nitrospirae and Proteobacteria. The difference between the M1 and M2 communities was minimal. Additionally, the microbiota in different PBBR samples displayed similar preferences for carbon sources, and carbohydrates and amino acids were the most commonly utilized carbon sources by microbiota. These results indicated that the combination of NS and AC fillers in a PBBR effectively enhanced the treatment efficiency of aquaculture wastewater when operated at an HRT of 4 h. The findings provide valuable insights into optimizing the design of aquaculture wastewater treatment systems.


Asunto(s)
Acuicultura , Biopelículas , Reactores Biológicos , Aguas Residuales , Purificación del Agua , Biopelículas/crecimiento & desarrollo , Reactores Biológicos/microbiología , Purificación del Agua/métodos , Aguas Residuales/microbiología , Aguas Residuales/química , Nitrógeno/metabolismo , Carbón Orgánico/química , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo , Análisis de la Demanda Biológica de Oxígeno , Microbiota , Eliminación de Residuos Líquidos/métodos , Calidad del Agua
2.
PeerJ ; 12: e17520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887619

RESUMEN

Habitual dietary changes have the potential to induce alterations in the host's gut microbiota. Mandarin fish (Siniperca chuatsi), an aquatic vertebrate species with distinct feeding habits, were fed with natural feeds (NF) and artificial feeds (AF) to simulate the effects of natural and processed food consumption on host gut microbiota assemblages. The results showed that the alpha diversity index was reduced in the AF diet treatment, as lower abundance and diversity of the gut microbiota were observed, which could be attributed to the colonized microorganisms of the diet itself and the incorporation of plant-derived proteins or carbohydrates. The ß-diversity analysis indicated that the two dietary treatments were associated with distinct bacterial communities. The AF diet had a significantly higher abundance of Bacteroidota and a lower abundance of Actinomycetota, Acidobacteriota, and Chloroflexota compared to the NF group. In addition, Bacteroidota was the biomarker in the gut of mandarin fish from the AF treatment, while Acidobacteriota was distinguished in the NF treatments. Additionally, the increased abundance of Bacteroidota in the AF diet group contributed to the improved fermentation and nutrient assimilation, as supported by the metabolic functional prediction and transcriptome verification. Overall, the present work used the mandarin fish as a vertebrate model to uncover the effects of habitual dietary changes on the evolution of the host microbiota, which may provide potential insights for the substitution of natural foods by processed foods in mammals.


Asunto(s)
Alimentación Animal , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Animales , Alimentación Animal/análisis , Dieta/veterinaria , Peces/microbiología , Alimentos Procesados
3.
Heliyon ; 10(7): e28423, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38623237

RESUMEN

Diets with high carbohydrate (HC) was reported to have influence on appetite and intermediary metabolism in fish. To illustrate whether betaine could improve appetite and glucose-lipid metabolism in aquatic animals, mandarin fish (Siniperca chuatsi) were fed with the HC diets with or without betaine for 8 weeks. The results suggested that betaine enhanced feed intake by regulating the hypothalamic appetite genes. The HC diet-induced downregulation of AMPK and appetite genes was also positively correlated with the decreased autophagy genes, suggesting a possible mechanism that AMPK/mTOR signaling might regulate appetite through autophagy. The HC diet remarkably elevated transcriptional levels of genes related to lipogenesis, while betaine alleviated the HC-induced hepatic lipid deposition. Additionally, betaine supplementation tended to store the energy storage as hepatic glycogen. Our findings proposed the possible mechanism for appetite regulation through autophagy via AMPK/mTOR, and demonstrated the feasibility of betaine as an aquafeed additive to regulate appetite and intermediary metabolism in fish.

4.
Antioxidants (Basel) ; 12(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37891939

RESUMEN

To investigate the impact of betaine on high-carbohydrate-diet-induced oxidative stress and endoplasmic reticulum (ER) stress, mandarin fish (Siniperca chuatsi) (23.73 ± 0.05 g) were fed with control (NC), betaine (BET), high carbohydrate (HC), and high carbohydrate + betaine (HC + BET) diets for 8 weeks. The results showed that betaine significantly promoted the growth of mandarin fish irrespective of the dietary carbohydrate levels. The HC diet induced oxidative stress, as evidenced by significantly elevated MDA levels. The HC diet significantly stimulated the mRNA levels of genes involved in ER stress (ire1, perk, atf6, xbp1, eif2α, atf4, chop), autophagy (ulk1, becn1, lc3b), and apoptosis (bax). However, betaine mitigated HC-diet-induced oxidative stress by modulating antioxidant enzymes and alleviated ER stress by regulating the mRNA of genes in the PERK-eIF2a-ATF4 pathway. Additionally, betaine significantly reduced the mRNA levels of becn1 and bax, along with the apoptosis rate, indicating a mitigating effect on autophagy and apoptosis. Overall, dietary betaine improved growth, attenuated HC-diet-induced oxidative stress and ER stress, and ultimately alleviated apoptosis in mandarin fish. These findings provide evidence for the use of betaine in aquafeeds to counter disruptive effects due to diets containing high carbohydrate levels.

5.
Int. microbiol ; 26(3): 639-650, Ene-Agos, 2023. ilus
Artículo en Inglés | IBECS | ID: ibc-223989

RESUMEN

Quorum sensing (QS) is a core mechanism for bacteria to regulate biofilm formation, and therefore, QS inhibition or quorum quenching (QQ) is used as an effective and economically feasible strategy against biofilms. In this study, the PvdQ gene encoding AHL acylase was introduced into Escherichia coli (DE3), and a PvdQ-engineered bacterium with highly efficient QQ activity was obtained and used to inhibit biofilm formation. Gene sequencing and western blot analysis showed that the recombinant pET-PvdQ strain was successfully constructed. The color reaction of Agrobacterium tumefaciens A136 indicated that PvdQ engineering bacteria had shown strong AHL signal molecule quenching activity and significantly inhibited the adhesion (motility) of Pseudomonas aeruginosa and biofilm formation of activated sludge bacteria in Membrane Bio-Reactor (MBR; inhibition rate 51–85%, p < 0.05). In addition, qRT-PCR testing revealed that recombinant PvdQ acylase significantly reduced the transcription level of QS biofilm formation-related genes (cdrA, pqsA, and lasR; p < 0.05). In this study, QQ genetically engineered bacteria enhanced by genetic engineering could effectively inhibit the QS signal transduction mechanism and have the potential to control biofilm formation of pathogenic bacteria in the aquaculture environment, providing an environmentally friendly and alternative antibiotic strategy to suppress biofilm contamination.(AU)


Asunto(s)
Humanos , Percepción de Quorum , Acuicultura , Bacterias , Biopelículas , Microbiología , Técnicas Microbiológicas
6.
PeerJ ; 11: e15733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483977

RESUMEN

Faba bean water extract (FBW) and vitamin K3 (VK3) have been demonstrated to improve the muscle textural quality of fish. To better apply these two feed additives in commercial aquaculture setting, four experimental diets (control, commercial feed group; 15% FBW, 15% faba bean water extract group; 2.5% VK3, 2.5% vitamin K3 group; combined group, 15% faba bean water extract + 2.5% vitamin K3 group) were formulated to explore their combined effects of FBW and VK3 on the growth, health status, and muscle textural quality of grass carp. The growth performance, textural quality, intestinal characteristics, and oxidative and immune responses were analyzed on days 40, 80 and 120. The results showed that supplementation with higher doses of FBW and VK3 have no influence on growth-related parameters and immune parameters of grass carp. Notably, compared with the control, fish in the combined group had the highest textural qualities (hardness, chewiness and adhesiveness), followed by those in 15% FBW and 2.5% VK3 groups (P < 0.05). Also, FBW and VK3, to some extent, may lower antioxidative ability of grass carp, as illustrated by lower levels of GSH and CAT in 15% FBW, 2.5% VK3, and combined groups on day 120 (P < 0.05). In addition, enhanced lipase activity was observed in the 15% FBW group. Taken together, the combined supplementation of FBW and VK3 was demonstrated to be a more advanced option than their individual supplementation in a commercial setting owing to the resulting combined effects on both the textural quality and health status of grass carp.


Asunto(s)
Carpas , Vicia faba , Animales , Vitamina K 3 , Dieta , Inmunidad , Estrés Oxidativo
7.
PeerJ ; 11: e15756, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520256

RESUMEN

Solid-phase denitrification shows promise for removing nitrate (NO3--N) from water. Biological denitrification uses external carbon sources to remove nitrogen from wastewater, among which agriculture waste is considered the most promising source due to its economic and efficiency advantages. Hydraulic retention time (HRT) and influent nitrate concentration (INC) are the main factors influencing biological denitrification. This study explored the effects of HRT and INC on solid-phase denitrification using wheat husk (WH) as a carbon source. A solid-phase denitrification system with WH carbon source was constructed to explore denitrification performance with differing HRT and INC. The optimal HRT and INC of the wheat husk-denitrification reactor (WH-DR) were 32 h and 50 mg/L, respectively. Under these conditions, NO3--N and total nitrogen removal rates were 97.37 ± 2.68% and 94.08 ± 4.01%, respectively. High-throughput sequencing revealed that the dominant phyla in the WH-DR operation were Proteobacteria, Bacteroidetes, and Campilobacterota. Among the dominant genera, Diaphorobacter (0.85%), Ideonella (0.38%), Thiobacillus (4.22%), and Sulfurifustis (0.60%) have denitrification functions; Spirochaeta (0.47%) is mainly involved in the degradation of WH; and Acidovorax (0.37%) and Azospira (0.86%) can both denitrify and degrade WH. This study determined the optimal HRT and INC for WH-DR and provides a reference for the development and application of WH as a novel, slow-release carbon source in treating aquaculture wastewater.


Asunto(s)
Comamonadaceae , Aguas Residuales , Nitratos , Desnitrificación , Triticum , Carbono , Reactores Biológicos/microbiología , Nitrógeno
8.
Food Chem ; 426: 136590, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331137

RESUMEN

The present study investigated the effects of chronic heat stress (HS) on the chemical composition, oxidative stability, muscle metabolism, and meat quality of Nile tilapia (Oreochromis niloticus). Compared with the control (26 °C), chronic HS (32 °C) lowered growth performance, the contents of whole-body lipid, muscle protein, and muscle lipid. Also, HS significantly increased the contents of reactive oxygen species (ROS) and decreased antioxidative status, causing a decline in meat quality, including increased lipid and protein oxidation, the centrifugal water loss, and cooking loss as well as decreased the fragmentation index and pH at 24 h, which may be attributed to induced apoptosis by excessive ROS in Nile tilapia meat. Moreover, metabolomic analysis showed HS lowered flavor and nutritional value by affecting amino acid, lipid, and nucleotide metabolism. These results reveal that HS adversely affects oxidative stability, meat quality, flavor, and nutrition, warranting its recognition and prevention.


Asunto(s)
Cíclidos , Animales , Cíclidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Músculos/metabolismo , Lípidos/química , Respuesta al Choque Térmico , Carne/análisis , Estrés Oxidativo , Alimentación Animal/análisis
9.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373386

RESUMEN

Excessive hepatic lipid accumulation is a common phenomenon in cultured fish; however, its underlying mechanisms are poorly understood. Lipid droplet (LD)-related proteins play vital roles in LD accumulation. Herein, using a zebrafish liver cell line (ZFL), we show that LD accumulation is accompanied by differential expression of seven LD-annotated genes, among which the expression of dehydrogenase/reductase (SDR family) member 3 a/b (dhrs3a/b) increased synchronously. RNAi-mediated knockdown of dhrs3a delayed LD accumulation and downregulated the mRNA expression of peroxisome proliferator-activated receptor gamma (pparg) in cells incubated with fatty acids. Notably, Dhrs3 catalyzed retinene to retinol, the content of which increased in LD-enriched cells. The addition of exogenous retinyl acetate maintained LD accumulation only in cells incubated in a lipid-rich medium. Correspondingly, exogenous retinyl acetate significantly increased pparg mRNA expression levels and altered the lipidome of the cells by increasing the phosphatidylcholine and triacylglycerol contents and decreasing the cardiolipin, phosphatidylinositol, and phosphatidylserine contents. Administration of LW6, an hypoxia-inducible factor 1α (HIF1α) inhibitor, reduced the size and number of LDs in ZFL cells and attenuated hif1αa, hif1αb, dhrs3a, and pparg mRNA expression levels. We propose that the Hif-1α/Dhrs3a pathway participates in LD accumulation in hepatocytes, which induces retinol formation and the Ppar-γ pathway.


Asunto(s)
PPAR gamma , Vitamina A , Animales , PPAR gamma/genética , PPAR gamma/metabolismo , Vitamina A/metabolismo , Gotas Lipídicas/metabolismo , Pez Cebra/genética , Hepatocitos/metabolismo , Ácidos Grasos/metabolismo , ARN Mensajero/metabolismo , Metabolismo de los Lípidos
10.
Sci Total Environ ; 895: 164814, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37308004

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) residues in fish, shrimp and shellfish have attracted attention because they are major species in the aquatic food chain and an important food source for humans. These organisms have various feeding habits and different living environments, and through the food chain, they can directly or indirectly connect particulate organic matter and human consumption. However, little attention has been paid to the bioaccumulation of PAHs in aquatic organism groups representing varied conditions and feeding habits in the food chain. In this study, 17 species of aquatic organisms, comprising fish, shrimp, and shellfish, were captured from 15 locations distributed within the river network of the Pearl River Delta. The concentration of 16 PAHs was measured in the aquatic organisms. The sum of the 16 measured PAHs ranged from 57.39 to 696.07 ng/g, dry weight, while phenanthrene had the highest individual content. The linear mixed effect model was applied to estimate the random effects of PAH accumulation in aquatic organisms. The result showed that the contributed proportion of variance to feeding habits (58.1 %) was higher than that of geographic distribution (11.8 %). In addition, one-way analysis of variance (ANOVA) demonstrated that the concentrations of PAHs depended on the water layer inhabited by the organism and its species status. Specifically, shellfish and carnivorous bottom-dwelling fish showed significantly higher levels than other aquatic organisms.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Humanos , Organismos Acuáticos , Hidrocarburos Policíclicos Aromáticos/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Peces , Crustáceos , Conducta Alimentaria , China , Sedimentos Geológicos/química
11.
Food Chem ; 424: 136417, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37244189

RESUMEN

Post-translational protein modification affects muscle physiochemistry. To understand the roles of N-glycosylation in this process, the muscle N-glycoproteomes of crisp grass carp (CGC) and ordinary grass carp (GC) were analyzed and compared. We identified 325 N-glycosylated sites with the NxT motif, classified 177 proteins, and identified 10 upregulated and 19 downregulated differentially glycosylated proteins (DGPs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations revealed that these DGPs participate in myogenesis, extracellular matrix content formation, and muscle function. The DGPs partially accounted for the molecular mechanisms associated with the relatively smaller fiber diameter and higher collagen content observed in CGC. Though the DGPs diverged from the identified differentially phosphorylated proteins and differentially expressed proteins detected in previous study, they all shared similar metabolic and signaling pathways. Thus, they might independently alter fish muscle texture. Overall, the present study provides novel insights into the mechanisms underlying fillet quality.


Asunto(s)
Carpas , Músculos , Animales , Músculos/metabolismo , Peces/genética , Peces/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Carpas/genética , Carpas/metabolismo
12.
Front Physiol ; 14: 1147001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969581

RESUMEN

This study examined the role of intestinal microbiota in berberine (BBR)-mediated glucose (GLU) metabolism regulation in largemouth bass. Four groups of largemouth bass (133.7 ± 1.43 g) were fed with control diet, BBR (1 g/kg feed) supplemented diet, antibiotic (ATB, 0.9 g/kg feed) supplemented diet and BBR + ATB (1g/kg feed +0.9 g/kg feed) supplemented diet for 50 days. BBR improved growth, decreased the hepatosomatic and visceral weight indices, significantly downregulated the serum total cholesterol and GLU levels, and significantly upregulated the serum total bile acid (TBA) levels. The hepatic hexokinase, pyruvate kinase, GLU-6-phosphatase and glutamic oxalacetic transaminase activities in the largemouth bass were significantly upregulated when compared with those in the control group. The ATB group exhibited significantly decreased final bodyweight, weight gain, specific growth rates and serum TBA levels, and significantly increased hepatosomatic and viscera weight indices, hepatic phosphoenolpyruvate carboxykinase, phosphofructokinase, and pyruvate carboxylase activities, and serum GLU levels. Meanwhile, the BBR + ATB group exhibited significantly decreased final weight, weight gain and specific growth rates, and TBA levels and significantly increased hepatosomatic and viscera weight indices and GLU levels. High-throughput sequencing revealed that compared with those in the control group, the Chao one index and Bacteroidota contents were significantly upregulated and the Firmicutes contents were downregulated in the BBR group. Additionally, the Shannon and Simpson indices and Bacteroidota levels were significantly downregulated, whereas the Firmicutes levels were significantly upregulated in ATB and BBR + ATB groups. The results of in-vitro culture of intestinal microbiota revealed that BBR significantly increased the number of culturable bacteria. The characteristic bacterium in the BBR group was Enterobacter cloacae. Biochemical identification analysis revealed that E. cloacae metabolizes carbohydrates. The size and degree of vacuolation of the hepatocytes in the control, ATB, and ATB + BBR groups were higher than those in the BBR group. Additionally, BBR decreased the number of nuclei at the edges and the distribution of lipids in the liver tissue. Collectively, BBR reduced the blood GLU level and improved GLU metabolism in largemouth bass. Comparative analysis of experiments with ATB and BBR supplementation revealed that BBR regulated GLU metabolism in largemouth bass by modulating intestinal microbiota.

13.
Int Microbiol ; 26(3): 639-650, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36773196

RESUMEN

Quorum sensing (QS) is a core mechanism for bacteria to regulate biofilm formation, and therefore, QS inhibition or quorum quenching (QQ) is used as an effective and economically feasible strategy against biofilms. In this study, the PvdQ gene encoding AHL acylase was introduced into Escherichia coli (DE3), and a PvdQ-engineered bacterium with highly efficient QQ activity was obtained and used to inhibit biofilm formation. Gene sequencing and western blot analysis showed that the recombinant pET-PvdQ strain was successfully constructed. The color reaction of Agrobacterium tumefaciens A136 indicated that PvdQ engineering bacteria had shown strong AHL signal molecule quenching activity and significantly inhibited the adhesion (motility) of Pseudomonas aeruginosa and biofilm formation of activated sludge bacteria in Membrane Bio-Reactor (MBR; inhibition rate 51-85%, p < 0.05). In addition, qRT-PCR testing revealed that recombinant PvdQ acylase significantly reduced the transcription level of QS biofilm formation-related genes (cdrA, pqsA, and lasR; p < 0.05). In this study, QQ genetically engineered bacteria enhanced by genetic engineering could effectively inhibit the QS signal transduction mechanism and have the potential to control biofilm formation of pathogenic bacteria in the aquaculture environment, providing an environmentally friendly and alternative antibiotic strategy to suppress biofilm contamination.


Asunto(s)
Biopelículas , Percepción de Quorum , Bacterias , Aguas del Alcantarillado/microbiología , Pseudomonas aeruginosa/genética
14.
Genome ; 66(1): 11-20, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36395476

RESUMEN

Pseudomonas furukawaii ZS1, isolated from grass carp (Ctenopharyngodon idellus) culture water, exhibits efficient aerobic nitrate reduction without nitrite accumulation; however, the molecular pathway underlying this aerobic nitrate reduction remains unclear. In this study, we constructed a complete genome map of P. furukawaii ZS1 and performed a comparative genomic analysis with a reference strain. The results showed that P. furukawaii ZS1 genome was 6 026 050 bp in size and contained 5427 predicted protein-coding sequences. The genome contained all the necessary genes for the dissimilatory nitrate reduction to ammonia pathway but lacked those for the assimilatory nitrate reduction pathway; additionally, genes that convert ammonia to organic nitrogen were also identified. The presence of putative genes associated with the nitrogen and oxidative phosphorylation pathways implied that ZS1 can perform respiration and nitrate reduction simultaneously under aerobic conditions, so that nitrite is rapidly consumed for detoxication by denitrification. The aim of this study is to indicate the great potential of strain ZS1 for future full-scale applications in aquaculture. This work provided insights at the molecular level on the nitrogen metabolic pathways in Pseudomonas species. The understanding of nitrogen metabolic pathways also provides significant molecular information for further Pseudomonas species modification and development.


Asunto(s)
Carpas , Nitratos , Animales , Nitratos/metabolismo , Nitritos/metabolismo , Amoníaco , Carpas/metabolismo , Agua , Pseudomonas/genética , Pseudomonas/metabolismo , Nitrógeno/metabolismo
15.
Foods ; 11(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36230136

RESUMEN

We explore the prospect of applying mineral element and stable isotope data in origin tracing Procambarus clarkii to establish an origin tracing system. Microwave digestion−atomic absorption spectrometry and stable isotope ratio mass spectrometry determined the contents of 14 mineral elements (Na, Mg, Al, K, Ca, Mn, Zn, Cu, Fe, Sr, Ba, As, Se and Cd) and the abundances of C and N stable isotopes in the muscle tissue of P. clarkii from Guangdong, Hunan and Hubei regions. The one-way ANOVA and Duncan multiple comparison results revealed Na, Sr, Ba, Cu, Mn, Fe, Al, Se, δ13C and δ15N varied significantly between the three regions (p < 0.05). A systematic clustering analysis revealed the stable isotopes combined with the mineral elements easily distinguished samples into the three different regions. Multivariate statistical analysis allowed us to establish a discriminant model for distinguishing P. clarkii from the three geographical regions. When stable isotopes were combined with mineral elements, the accuracy of the linear discriminant analysis of the samples from Guangdong, Hunan and Hubei were 95%, 95% and 100%, respectively. The initial overall discriminant accuracy was 96.7%, and the cross-validation discriminant accuracy was 93.3%. Principal component analysis identified three main components which were based on eleven major factors, including Cu, Ba, Cd, Mn, δ13C, δ15N, Al and Mg, resulting in a cumulative variance contribution rate of 78.77%. We established a three-dimensional coordinate system using the three principal components to create scatter diagrams with the samples from the three regions in the coordinate system. The results revealed the samples clearly differentiated into the three regions. Therefore, mineral elements combined with stable isotopes can distinguish the regional origin of P. clarkii.

16.
Front Endocrinol (Lausanne) ; 13: 950985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966089

RESUMEN

The pregnane X receptor (PXR) is a master xenobiotic-sensing receptor in response to toxic byproducts, as well as a key regulator in intermediary lipid metabolism. Therefore, the present study was conducted to investigate the potential role of PXR in mediating the lipid dysregulation and xenobiotic responses under Cu-induced stress in largemouth bass (Micropterus salmoides). Four groups of largemouth bass (52.66 ± 0.03 g) were treated with control, Cu waterborne (9.44 µmol/L), Cu+RIF (Rifampicin, 100 mg/kg, PXR activator), and Cu+KET (Ketoconazole, 20 mg/kg, PXR inhibitor) for 48 h. Results showed that Cu exposure significantly elevated the plasma stress indicators and triggered antioxidant systems to counteract Cu-induced oxidative stress. Acute Cu exposure caused liver steatosis, as indicated by the significantly higher levels of plasma triglycerides (TG), lipid droplets, and mRNA levels of lipogenesis genes in the liver. Liver injuries were detected, as shown by hepatocyte vacuolization and severe apoptotic signals after Cu exposure. Importantly, Cu exposure significantly stimulated mRNA levels of PXR, suggesting the response of this regulator in the xenobiotic response. The pharmacological intervention of PXR by the agonist and antagonist significantly altered hepatic mRNA levels of PXR, implying that RIF and KET were effective agents of PXR in largemouth bass. Administration of RIF significantly exacerbated liver steatosis, and such alterations were dependent on the regulations on pparγ and cd36 rather than srebp1 signaling, which suggested that PXR-PPARγ might be another pathway for Cu-induced lipid deposition in fish. Whereas, KET administration showed reverse effects on lipid metabolism as indicated by the lower hepatic TG levels, suppressed mRNA levels of pparγ and cd36. Activation of PXR stimulated autophagy and inhibited apoptosis, leading to lower hepatic vacuolization; while inhibition of PXR showed higher apoptotic signals, inhibition of autophagic genes and stimulation of apoptotic genes. Taken together, PXR played a cytoprotective role in Cu-induced hepatotoxicity through regulations on autophagy and apoptosis. Overall, our data has demonstrated for the first time on the dual roles of PXR as a co-regulator in mediating xenobiotic responses and lipid metabolism in fish, which implying the potential of PXR as a therapy target for xenobiotics-induced lipid dysregulation and hepatotoxicity.


Asunto(s)
Lubina , Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado Graso , Receptores de Esteroides , Animales , Antígenos CD36/metabolismo , Hígado Graso/metabolismo , Metabolismo de los Lípidos/fisiología , PPAR gamma/metabolismo , Receptor X de Pregnano/metabolismo , ARN Mensajero/metabolismo , Receptores de Esteroides/genética , Triglicéridos , Xenobióticos/farmacología
17.
Cells ; 11(12)2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35740999

RESUMEN

Fatty liver, characterized by excessive lipid droplet (LD) accumulation in hepatocytes, is a common physiological condition in humans and aquaculture species. Lipid mobilization is an important strategy for modulating the number and size of cellular LDs. Cyclooxygenase (COX)-mediated arachidonic acid derivatives are known to improve lipid catabolism in fish; however, the specific derivatives remain unknown. In the present study, we showed that serum starvation induced LD degradation via autophagy, lipolysis, and mitochondrial energy production in zebrafish hepatocytes, accompanied by activation of the COX pathway. The cellular concentration of PGF2α, but not other prostaglandins, was significantly increased. Administration of a COX inhibitor or interference with PGF2α synthase abolished serum deprivation-induced LD suppression, LD-lysosome colocalization, and expression of autophagic genes. Additionally, exogenous PGF2α suppressed the accumulation of LDs, promoted the accumulation of lysosomes with LD and the autophagy marker protein LC3A/B, and augmented the expression of autophagic genes. Moreover, PGF2α enhanced mitochondrial accumulation and ATP production, and increased the transcript levels of ß-oxidation- and mitochondrial respiratory chain-related genes. Collectively, these findings demonstrate that the COX pathway is implicated in lipid degradation induced by energy deprivation, and that PGF2α is a key molecule triggering autophagy, lipolysis, and mitochondrial development in zebrafish hepatocytes.


Asunto(s)
Gotas Lipídicas , Pez Cebra , Animales , Autofagia , Dinoprost/metabolismo , Hepatocitos/metabolismo , Gotas Lipídicas/metabolismo , Prostaglandinas/metabolismo
18.
PeerJ ; 10: e13339, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35505679

RESUMEN

Nitrogen pollution in aquaculture wastewater can pose a significant health and environmental risk if not removed before wastewater is discharged. Biological denitrification uses external carbon sources to remove nitrogen from wastewater; however, these carbon sources are often expensive and require significant energy. In this study, we investigated how six types of agricultural waste can be used as solid carbon sources in biological denitrification. Banana stalk (BS), loofah sponge (LS), sorghum stalk (SS), sweet potato stalk (SPS), watermelon skins (WS) and wheat husk (WH) were studied to determine their capacity to release carbon and improve denitrification efficiency. The results of batch experiments showed that all six agricultural wastes had excellent carbon release capacities, with cumulative chemical oxygen demands of 37.74-535.68 mg/g. During the 168-h reaction, the carbon release process followed the second-order kinetic equation and Ritger-Peppas equation, while carbon release occurred via diffusion. The kinetic equation fitting, scanning electron microscopy, and Fourier transform infrared spectroscopy results showed that LS had the lowest cm and the maximum t1/2 values and only suffered a moderate degree of hydrolysis. It also had the lowest pollutant release rate and cumulative chemical oxygen demand, as well as the most efficient removal of total phosphorous (TP) and total nitrogen (TN). Therefore, we concluded that LS has the lowest potential risk of excess carbon release and capacity for long-lasting and stable carbon release. The WS leachate had the highest TN contents, while the SPS leachate had the highest TP content. In the 181-h denitrification reaction, all six agricultural wastes completely removed nitrate and nitrite; however, SS had the highest denitrification rate, followed by LS, WH, BS, SPS, and WS (2.16, 1.35, 1.35, 1.34, 1.34, and 1.01 mg/(L·h), respectively). The denitrification process followed a zero-order and first-order kinetic equation. These results provide theoretical guidance for effectively selecting agricultural waste as a solid carbon source and improving the denitrification efficiency of aquaculture wastewater treatment.


Asunto(s)
Musa , Aguas Residuales , Desnitrificación , Reactores Biológicos , Acuicultura , Carbono/química , Nitrógeno/química , Fósforo
19.
Food Res Int ; 155: 111071, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35400449

RESUMEN

Among legumes, broad bean (Vicia faba L.) has received particular attention due to its nutraceutical, functional and economic importance. The plant-derived microRNAs (miRNAs), as novel dietary functional components, are found to regulate the expression of endogenous mRNAs in vertebrates. To understand the role of broad bean miRNAs in the regulation of muscle texture, we investigated the miRNA-mRNA network in the established crisp grass carp model fed with broad bean. We identified various miRNAs that potentially improved muscle texture; miR-101b-3p activated Wnt signaling and satellite cell proliferation; miR-126-3p, miR-29a and miR-148b promoted hyperplasia by targeting muscle structure genes (tln2, TPM1, etc.); miR-152-5p and miR-185 regulated collagen expression via Smads signaling pathways; and miR-146a and miR-371-3p increased reactive oxygen species (ROS) by suppressing cat and prdx6. Among these changes, at least the Wnt signal activation was driven by broad bean-derived miR-101b-3p. This paper was conducted to investigate the cross-kingdom regulatory effects of broad bean miRNA on muscle structure and provide basic data for the development and application of broad bean.


Asunto(s)
Carpas , Fabaceae , MicroARNs , Vicia faba , Animales , Carpas/genética , Fabaceae/genética , MicroARNs/genética , MicroARNs/metabolismo , Músculos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Microorganisms ; 9(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34683490

RESUMEN

Aquaculture is crucial for achieving the FAO's goal of a world without hunger and malnutrition. Recently, biofilm substratum has been proposed as an effective means to control waste pollution caused by excessive nutrient inputs from aquaculture, but key bacterial communities involved in the remediation remain unclear. Here we reported a freshwater mesocosm study where the addition of biofilm substrata with external carbon effectively controlled the total ammonia nitrogen and improved fish growth. 16S rRNA study and Weighted UniFrac analysis revealed that bacterial compositions were significantly different (999 permutations, p-value < 0.01) between the biofilm-substrata-added and biofilm-substrata-free systems. Planctomycetes were found, as key bacteria benefited from the biofilm substrata addition and exerted the major function of ammonia nitrogen control. Our study demonstrated that the addition of biofilm substrata and an external carbon source favored fish growth and improved the aquaculture environment by the formation of a unique bacteria community.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...