Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Yi Chuan ; 46(4): 333-345, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38632095

RESUMEN

China has a high dependence on soybean imports, yield increase at a faster rate is an urgent problem that need to be solved at present. The application of heterosis is one of the effective ways to significantly increase crop yield. In recent years, the development of an intelligent male sterility system based on recessive nuclear sterile genes has provided a potential solution for rapidly harnessing the heterosis in soybean. However, research on male sterility genes in soybean has been lagged behind. Based on transcriptome data of soybean floral organs in our research group, a soybean stamen-preferentially expressed gene GmFLA22a was identified. It encodes a fasciclin-like arabinogalactan protein with the FAS1 domain, and subcellular localization studies revealed that it may play roles in the endoplasmic reticulum. Take advantage of the gene editing technology, the Gmfla22a mutant was generated in this study. However, there was a significant reduction in the seed-setting rate in the mutant plants at the reproductive growth stage. The pollen viability and germination rate of Gmfla22a mutant plants showed no apparent abnormalities. Histological staining demonstrated that the release of pollen grains in the mutant plants was delayed and incomplete, which may due to the locule wall thickening in the anther development. This could be the reason of the reduced seed-setting rate in Gmfla22a mutants. In summary, our study has preliminarily revealed that GmFLA22a may be involved in regulating soybean male fertility. It provides crucial genetic materials for further uncovering its molecular function and gene resources and theoretical basis for the utilization of heterosis in soybean.


Asunto(s)
Glycine max , Infertilidad Masculina , Masculino , Humanos , Plantas , Polen/genética , Fertilidad , Infertilidad Vegetal/genética , Regulación de la Expresión Génica de las Plantas
2.
Risk Manag Healthc Policy ; 16: 347-356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923494

RESUMEN

Purpose: Quality control circle (QCC) has acquired success in many fields in healthcare industry as a process management tool, whereas its efficacy in surgical antimicrobial prophylaxis (SAP) remains unknown. This study aimed to implement QCC interventions to improve the appropriateness of SAP. Methods: A QCC activity team was established to grasp the current situation of SAP in clean surgery procedure, set target, formulate corresponding countermeasures and implement and review them in stages. The plan-do-check-act (PDCA) method was cyclically applied. Results: The appropriateness of antibiotic prophylaxis before (January to December 2020) and after (January to December 2021) the implementation of QCC activities were evaluated based on relevant international and Chinese SAP guidelines. The overall SAP appropriateness was significantly improved from 68.72% before QCC to 93.7% post QCC implementation (P<0.01). A significant improvement (P<0.05) was also determined for each category: selection (from 78.82% to 96.06%), duration (from 90.15% to 96.46%), indication (from 94.09% to 97.64%), timing of first dose (from 96.55% to 99.21%), antimicrobial usage (from 96.8% to 99.41%), re-dosing of antimicrobial (from 96.55% to 99.21%). Conclusion: Implementation of a QCC program can optimize the use of antibiotics and improve the appropriateness of SAP and is of practical importance to their standardization.

3.
RSC Adv ; 10(33): 19300-19308, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35515443

RESUMEN

In recent years, gold nanoparticles (AuNPs) have been widely used as gene silencing agents and therapeutics for treatment of cancers due to their high transfection efficiency and lack of cytotoxicity, but their roles in gene silencing in plants have not yet been reported. Here, we report synthesis of AuNPs-branched polyethylenimine and its integration with the small interfering RNAs (siRNA) of NPR1 to form a AuNPs-siRNA NPR1 compound. Our results showed that AuNPs-siRNA NPR1 was capable of infiltrating into Arabidopsis cells. AuNPs-siRNA NPR1 silenced 80% of the NPR1 gene in Arabidopsis. Bacteriostatic and ion leakage experiments suggest that the NPR1 gene in Arabidopsis leaves was silenced by AuNPs-siRNA NPR1 . In Columbia-0 plants, compared with the control group treated with buffer solution, the AuNPs-siRNA NPR1 treatment significantly increased the number of colonies and cell death, and the leaves turned yellow, similar to the phenotype of the npr1 leaves. These results indicated this AuNPs-siRNA NPR1 silencing the NPR1 gene method is simple, effective and quick (3 days), and a powerful tool to study gene functions in plants.

4.
J Chromatogr Sci ; 48(5): 399-405, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20515536

RESUMEN

Butyl-methacrylate-based porous monoliths were rapidly prepared in the fused-silica capillary with a 10-cm stripe of polyimide removed from its exterior. The photopolymerization could be carried out in 150 s using ethylene glycol dimethacrylate as a cross-linking agent; 1-propanol, 1,4-butanediol, and water as tri-porogenic solvents; and Irgacure 1800 as a photo-initiator. The effect of different morphologies on the efficiency and retention properties was investigated using pressure-assisted CEC (p-CEC), CEC, and low pressure-assisted liquid chromatography modes (LPLC). Baseline separation of the model analytes was respectively achieved including thiourea, toluene, naphthalene, and biphenyl with the lowest theoretical height up to 8.0 microm for thiourea in the mode of p-CEC. Furthermore, the influence of the tri-porogenic solvents on the morphology of methacrylate-based monoliths was systematically studied with mercury intrusion porosimetry and scanning electron microscopy.

5.
J Chromatogr A ; 1098(1-2): 183-7, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16288766

RESUMEN

Central composite design (CCD) was effectively employed to decide optimum conditions for the rapid separation of Sudan dyes using reverse-phase high performance liquid chromatography (HPLC). Twenty experiments, taking the minimum resolution and retention time of the last eluted peak as the responses with three important factors, mobile phase composition, flow rate and column temperature, were used to design a mathematical model. The experimental responses were fitted into a second order polynomial and used to predict the optimum conditions for the effective separation of the studied compounds. Further, chromatographic separation efficiency was tested through generation of Pareto-optimal points. The validity of using modified central composite design in predicting the optimization conditions was experimentally verified. The optimum conditions were: acetonitrile/0.1% aqueous formic acid (90/10, %v/v) as the mobile phase, at a flow rate of 1.2mL/min and column temperature of 15 degrees C, respectively. While using this optimum condition, baseline separation with a minimum resolution more than 1.5 and a separation time of less than 6min were achieved.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Colorantes/aislamiento & purificación , Acetonitrilos/química , Cromatografía Líquida de Alta Presión/instrumentación , Formiatos/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Solventes/química , Estereoisomerismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...