Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 81
1.
Nat Commun ; 15(1): 4880, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849347

Assembling graphene sheets into macroscopic fibers with graphitic layers uniaxially aligned along the fiber axis is of both fundamental and technological importance. However, the optimal performance of graphene-based fibers has been far lower than what is expected based on the properties of individual graphene. Here we show that both mechanical properties and electrical conductivity of graphene-based fibers can be significantly improved if bridges are created between graphene edges through covalent conjugating aromatic amide bonds. The improved electrical conductivity is likely due to extended electron conjugation over the aromatic amide bridged graphene sheets. The larger sheets also result in improved π-π stacking, which, along with the robust aromatic amide linkage, provides high mechanical strength. In our experiments, graphene edges were bridged using the established wet-spinning technique in the presence of an aromatic amine linker, which selectively reacts to carboxyl groups at the graphene edge sites. This technique is already industrial and can be easily upscaled. Our methodology thus paves the way to the fabrication of high-performance macroscopic graphene fibers under optimal techno-economic and ecological conditions.

2.
Small ; : e2311851, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38312088

Aqueous Zn-metal battery is considered as a promising energy-storage system. However, uncontrolled zinc dendrite growth is the main cause of short-circuit failure in aqueous Zn-based batteries. One of the most efficient and convenient strategies to alleviate this issue is to introduce appropriate zincophilic nucleation sites to guide zinc metal deposition and regulate crystal growth. Herein, this work proposes Bi2 O3 /Bi nanosheets anchored on the cell wall surface of the 3D porous conductive host as the Zn deposition sites to modulate Zn deposition behavior and hence inhibit the zinc dendrite growth. Density functional theory and experimental results demonstrate that Bi2 O3 has a super zinc binding energy and strong adsorption energy with zinc (002) plane, as a super-zincophilic nucleation site, which results in the deposition of zinc preferentially along the horizontal direction of (002) crystal plane, fundamentally avoids the formation of Zn dendrites. Benefiting from the synergistic effect Bi2 O3 /Bi zincophilic sites and 3D porous structure in the B-BOGC host, the electrochemical performance of the constructed Zn-based battery is significantly improved. As a result, the Zn anode cycles for 1500 cycles at 50 mA cm-2 and 1.0 mAh cm-2 . Meanwhile, the Zn@B-BOGC//MnO2 full cell can operate stably for 2000 cycles at 2.0 A g-1 .

3.
Adv Mater ; 36(21): e2313772, 2024 May.
Article En | MEDLINE | ID: mdl-38402409

Fiber-shaped aqueous zinc-ion batteries (FAZIBs) with intrinsic safety, highcapacity, and superb omnidirectional flexibility hold promise for wearable energy-supply devices. However, the interfacial separation of fiber-shaped electrodes and electrolytes caused by Zinc (Zn) stripping process and severe Zn dendrites occurring at the folded area under bending condition seriously restricts FAZIBs' practical application. Here, an advanced confinement encapsulation strategy is originally reported to construct dual-layer gel electrolyte consisting of high-fluidity polyvinyl alcohol-Zn acetate inner layer and high-strength Zn alginate outer layer for fiber-shaped Zn anode. Benefiting from the synergistic effect of inner-outer gel electrolyte and the formation of solid electrolyte interphase on Zn anode surface by lysine additive, the resulting fiber-shaped Zn-Zn symmetric cell delivers long cycling life over 800 h at 1 mA cm-2 with dynamic bending frequency of 0.1 Hz. The finite element simulation further confirms that dual-layer gel electrolyte can effectively suppress the interfacial separation arising from the Zn stripping and bending process. More importantly, a robust twisted fiber-shaped Zn/zinc hexacyanoferrate battery based on dual-layer gel electrolyte is successfully assembled, achieving a remarkable capacity retention of 97.7% after bending 500 cycles. Therefore, such novel dual-layer gel electrolyte design paves the way for the development of long-life fiber-shaped aqueous metal batteries.

4.
J Am Chem Soc ; 146(9): 6231-6239, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38386884

Acquiring a deep insight into the electron transfer mechanism and applications of one-dimensional (1D) van der Waals heterostructures (vdWHs) has always been a significant challenge. Herein, through direct observation using aberration-corrected transmission electron microscopy (AC-TEM), we verify the stable formation of a high-quality 1D heterostructure composed of PbI2@single-walled carbon nanotubes (SWCNTs). The phenomenon of electron transfer between PbI2 and SWCNT is elucidated through spectroscopic investigations, including Raman and X-ray photoelectron spectroscopy (XPS). Electrochemical testing indicates the electron transfer and enduring stability of 1D PbI2 within SWCNTs. Moreover, leveraging the aforementioned electron transfer mechanism, we engineer self-powered photodetectors that exhibit exceptional photocurrent and a 3-order-of-magnitude switching ratio. Subsequently, we reveal its unique electron transfer behavior using Kelvin probe force microscopic (KPFM) tests. According to KPFM, the average surface potential of SWCNTs decreases by 80.6 mV after filling. Theoretical calculations illustrate a charge transfer of 0.02 e per unit cell. This work provides an effective strategy for the in-depth investigation and application of electron transfer in 1D vdWHs.

5.
Small ; 20(1): e2304847, 2024 Jan.
Article En | MEDLINE | ID: mdl-37658511

The "shuttle effect" and slow redox reactions of Li-S batteries limit their practical application. To solve these problems, a judicious catalyst design for improved battery cycle life and rate performance is essential. Herein, this issue is addressed by modifying the Li-S battery separator using a 2D Fe2 O3 -CoP heterostructure that combines the dual functions of polar Fe2 O3 and high-conductivity CoP. The synthesized ultrathin nanostructure exposes well-dispersed active sites and shortens the ion diffusion paths. Theoretical calculations, electrochemical tests, and in situ Raman spectroscopy measurements reveal that the heterostructure facilitates the inhibition of polysulfide shuttling and enhances the electrode kinetics. A sulfur cathode constructed using the Fe2 O3 -CoP-based separator provides an astonishing capacity of 1346 mAh g-1 at 0.2 C and a high capacity retention of ≈84.5%. Even at a high sulfur loading of 5.42 mg cm-2 , it shows an area capacity of 5.90 mAh cm-2 . This study provides useful insights into the design of new catalytic materials for Li-S batteries.

6.
Adv Mater ; 36(11): e2303906, 2024 Mar.
Article En | MEDLINE | ID: mdl-37560808

Amorphous transition metal oxides have attracted significant attention in energy storage devices owing to their potentially desirable electrochemical properties caused by abundant unsaturated dangling bonds. However, the amorphization further amplifies the shortcoming of the poor intrinsic electronic conductivity of the metal oxides, resulting in unsatisfying rate capability and power density. Herein, freestanding amorphous Ca-doped V2 O5 (a-Ca-V2 O5 ) cathodes are successfully prepared via in situ electrochemical oxidation of Ca-doped VO2 nanoarrays for wearable aqueous zinc-ion batteries. The doping of Ca and construction of freestanding structure effectively uncover the potential of amorphous V2 O5 , which can make full use of the abundant active sites for high volumetric capacity and simultaneously achieve fast reaction kinetics for excellent rate performance. More importantly, the introduction of Ca can notably reduce the formation energy of VO2 according to theoretical calculation results and realizes amorphous to crystalline reversible conversion chemistry in the charge/discharge procedure, thereby facilitating the reversible capacity of the newly developed a-Ca-V2 O5 . This work provides an innovative design strategy to construct high-rate capacity amorphous metal oxides as freestanding electrodes for low-cost and high-safe wearable energy-storage technology.

7.
Small ; : e2306722, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38088588

To change the binary structure of nanotube and nanotube array in vertically aligned carbon nanotube arrays, this work deposits regularly arranged amorphous alumina sheets on the classical array growth catalyst (10 nm-thick alumina and 2 nm-thick iron) and obtains an array similar to the Medusa head. Subsequent experiments revealed that these alumina sheets show both unstable and stable qualities during growth: unstable in that they thermally deform and change their newly discovered characteristics of blocking carbon source diffusion, which regulates the nanotube growth order in specific areas; stable in that they withstand the deformation caused by heat and sequential growth of nanotubes, serving as a substrate and buffer layer for Medusa's hair, i.e., nanotube bundles on the array surface. Their combination splits this binary structure into a tertiary architecture consisting of nanotubes, nanotube bundles, and the array spanning nano-, micro-, and milli-meter. Benefiting from this structure, this array exhibits a unique near-isotropic adhesion characteristic compared to existing reports and outperforms classical and patterned arrays with the same classical catalyst and growth conditions.

8.
Cell Mol Life Sci ; 80(11): 337, 2023 Oct 28.
Article En | MEDLINE | ID: mdl-37897551

Hypervirulent Klebsiella pneumoniae (hvKP) is a highly lethal opportunistic pathogen that elicits more severe inflammatory responses compared to classical Klebsiella pneumoniae (cKP). In this study, we investigated the interaction between hvKP infection and the anti-inflammatory immune response gene 1 (IRG1)-itaconate axis. Firstly, we demonstrated the activation of the IRG1-itaconate axis induced by hvKP, with a dependency on SYK signaling rather than STING. Importantly, we discovered that exogenous supplementation of itaconate effectively inhibited excessive inflammation by directly inhibiting SYK kinase at the 593 site through alkylation. Furthermore, our study revealed that itaconate effectively suppressed the classical activation phenotype (M1 phenotype) and macrophage cell death induced by hvKP. In vivo experiments demonstrated that itaconate administration mitigated hvKP-induced disturbances in intestinal immunopathology and homeostasis, including the restoration of intestinal barrier integrity and alleviation of dysbiosis in the gut microbiota, ultimately preventing fatal injury. Overall, our study expands the current understanding of the IRG1-itaconate axis in hvKP infection, providing a promising foundation for the development of innovative therapeutic strategies utilizing itaconate for the treatment of hvKP infections.


Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Dysbiosis/drug therapy , Klebsiella Infections/drug therapy , Inflammation/drug therapy , Alkylation , Syk Kinase
9.
Int J Biol Sci ; 19(15): 4931-4947, 2023.
Article En | MEDLINE | ID: mdl-37781519

Gasdermins (GSDMs) serve as pivotal executors of pyroptosis and play crucial roles in host defence, cytokine secretion, innate immunity, and cancer. However, excessive or inappropriate GSDMs activation is invariably accompanied by exaggerated inflammation and results in tissue damage. In contrast, deficient or impaired activation of GSDMs often fails to promptly eliminate pathogens, leading to the increasing severity of infections. The activity of GSDMs requires meticulous regulation. The dynamic modulation of GSDMs involves many aspects, including autoinhibitory structures, proteolytic cleavage, lipid binding and membrane translocation (oligomerization and pre-pore formation), oligomerization (pore formation) and pore removal for membrane repair. As the most comprehensive and efficient regulatory pathway, posttranslational modifications (PTMs) are widely implicated in the regulation of these aspects. In this comprehensive review, we delve into the complex mechanisms through which a variety of proteases cleave GSDMs to enhance or hinder their function. Moreover, we summarize the intricate regulatory mechanisms of PTMs that govern GSDMs-induced pyroptosis.


Gasdermins , Protein Processing, Post-Translational , Proteolysis , Endopeptidases , Immunity, Innate , Peptide Hydrolases
10.
Nat Commun ; 14(1): 5363, 2023 Sep 02.
Article En | MEDLINE | ID: mdl-37660156

The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of -35 mV at -10 mA/cm2 and a small Tafel slope (-34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of -10 and -50 mA/cm2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte.

12.
ACS Nano ; 17(18): 18494-18506, 2023 Sep 26.
Article En | MEDLINE | ID: mdl-37698337

Wearable smart textiles are natural carriers to enable imperceptible and highly permeable sensing and response to environmental conditions via the system integration of multiple functional fibers. However, the existing massive interfaces between different functional fibers significantly increase the complexity and reduce the wearability of the textile system. Thus, it is significant yet challenging to achieve all-in-one multifunctional fibers for realizing miniaturized and lightweight smart textiles with high reliability. Herein, as bifunctional electrolyte additives, fluorescent carbon dots with abundant zincophilic functional groups are introduced into electrolytes to develop fluorescent fiber-shaped aqueous zinc-ion batteries (FFAZIBs). Originating from effective dendrite suppression of Zn anodes and multiple active sites of freestanding Prussian blue cathodes, high energy density (0.17 Wh·cm-3) and long-term cyclability (78.9% capacity retention after 1500 cycles) are achieved for FFAZIBs. More importantly, the one-dimensional structure ensures the same luminance in all directions of FFAZIBs, enabling the form of multicolor display-in-battery textiles.

13.
Inflamm Bowel Dis ; 29(12): 1941-1956, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37624989

Exosomes are considered a mediator of communication within the tumor microenvironment (TME), which modulates cancer progression through transmitting cargos between cancer cells and other cancer-related cells in TME. Circular RNAs (circRNAs) have emerged to be regulators in colorectal cancer (CRC) progression, but most of them have not been discussed in CRC. This study aims to investigate the role of circRNA aspartate beta-hydroxylase (circASPH) in CRC progression and its correlation with exosome-mediated TME. At first, we determined that circASPH was upregulated in CRC samples and cell lines. Functionally, the circASPH deficiency suppressed the malignant processes of CRC cells and also inhibited in vivo tumor growth via enhancing antitumor immunity. Mechanically, circASPH facilitated macrophage M2 polarization by upregulating exosomal stimulator of interferon genes (STING). CircASPH interacted with insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) to stabilize IGF2BP2 protein, therefore enhancing the stability of m6A-modified STING mRNA. In turn, coculture of STING-overexpressed macrophages recovered the suppression of silenced circASPH on the malignancy of CRC cells both in vitro and in vivo. Our study demonstrated that circASPH enhances exosomal STING to facilitate M2 macrophage polarization, which further accelerates CRC progression. The findings support circASPH as a promising therapeutic target for CRC treatment.


CircASPH is markedly overexpressed in CRC cell lines and promotes CRC progression. CircASPH deficiency inhibits in vivo tumor growth via enhancing antitumor immunity. CircASPH upregulates STING to enhance M2 macrophage polarization.


Colorectal Neoplasms , MicroRNAs , Humans , Cell Line, Tumor , Macrophages/metabolism , Cell Communication , Colorectal Neoplasms/pathology , RNA, Messenger/metabolism , MicroRNAs/genetics , Tumor Microenvironment , RNA-Binding Proteins/metabolism
14.
Small ; 19(52): e2304462, 2023 Dec.
Article En | MEDLINE | ID: mdl-37649196

Ammonium vanadate (NVO) often has unsatisfactory electrochemical performance due to the irreversible removal of NH4 + during the reaction. Herein, layered DMF-NVO nanoflake arrays (NFAs) grown on highly conductive carbon cloth (CC) are employed as the binder-free cathode (DMF-NVO NFAs/CC), which produces an enlarged interlayer spacing of 12.6 Å (against 9.5 Å for NH4 V4 O10 ) by effective N, N-dimethylformamide (DMF) intercalation. Furthermore, the strong attraction of highly polar carbonyl and ammonium ions in DMF can stabilize the lattice structure, and low-polar alkyl groups can interact with the weak electrostatic generated by Zn2+ , which allows Zn2+ to be freely intercalated. The DMF-NVO NFAs/CC//Zn battery exhibits an impressive high capacity of 536 mAh g-1 at 0.5 A g-1 , excellent rate capability, and cycling performance. The results of density functional theory simulation demonstrate that the intercalation of DMF can significantly reduce the band gap and the diffusion barrier of Zn2+ , and can also accommodate more Zn2+ . The assembled flexible aqueous rechargeable zinc ion batteries (FARZIBs) exhibit outstanding energy density and power density, up to 436 Wh kg-1 at 400 W kg-1 , and still remains 180 Wh kg-1 at 4000 W kg-1 . This work can provide a reference for the design of cathode materials for high-performance FARZIBs.

15.
ACS Appl Mater Interfaces ; 15(35): 41426-41437, 2023 Sep 06.
Article En | MEDLINE | ID: mdl-37612260

Nonstoichiometric compounds are widely used in contemporary energy technologies due to their high surface polarity, tailored electronic structure, high electrical conductivity, and other enhanced properties. However, the preparation of such nonstoichiometric compounds can be complicated and, in some cases, uncontrollable and dangerous. Here, we report a "one-pot" strategy for synthesizing N-doped porous graphitic carbon that is hybridized with nonstoichiometric scandium oxide (denoted as ScO0.95@N-PGC) and show that the composite significantly promotes sulfur cathode kinetics in lithium-sulfur (Li-S) batteries. The synthesis of the ScO0.95@N-PGC composite entails heating a porous dry gel that consists of a C source (glucose), a N source (dicyandiamide), and a Sc source (Sc(NO3)3·H2O). Thermally decomposing the dicyandiamide creates a highly reductive atmosphere that simultaneously affords the hypoxic state of the ScO0.95 and dopes the carbon matrix with nitrogen. Density functional theory reveals the presence of oxygen vacancies that enable the ScO0.95 crystals to function as excellent electrical conductors, exhibit enhanced adsorption toward polysulfides, and accelerate the cathode reactions by lowering the corresponding activation energies. Moreover, Li-S cells prepared from the ScO0.95@N-PGC composite display a high specific capacity (1046 mA h g-1 at 0.5 C), an outstanding cycling stability (641 mA h g-1 after 1000 charge-discharge cycles at 0.5 C, a capacity decay of 0.038% per cycle), and a particularly outstanding rate capability (438 mA h g-1 at 8 C). The methodology described establishes a sustainable approach for synthesizing nonstoichiometric compounds while broadening their potential utility in a broad range of energy technologies.

16.
ACS Appl Mater Interfaces ; 15(19): 23217-23225, 2023 May 17.
Article En | MEDLINE | ID: mdl-37146292

Cobalt oxide (Co3O4) is regarded as the anode material for lithium-ion batteries (LIBs) with great research value owing to its environmental friendliness and exceptional theoretical capacity. However, the low intrinsic conductivity, poor electrochemical kinetics, and unsatisfactory cycling performance severely limit its practical applications in LIBs. The construction of a self-standing electrode with heterostructure by introducing a highly conductive cobalt-based compound is an effective strategy to solve the above issues. Herein, Co3O4/CoP nanoflake arrays (NFAs) with heterostructure are constructed skillfully directly grown on carbon cloth (CC) by in situ phosphorization as an anode for LIBs. Density functional theory simulation results demonstrate that the construction of heterostructure greatly increases the electronic conductivity and Li ion adsorption energy. The Co3O4/CoP NFAs/CC exhibited an extraordinary capacity (1490.7 mA h g-l at 0.1 A g-l) and excellent performance at high current density (769.1 mA h g-l at 2.0 A g-l), as well as remarkable cyclic stability (451.3 mA h g-l after 300 cycles with a 58.7% capacity retention rate). The reasonable construction of heterostructure can promote the interfacial ion transport, significantly enhance the adsorption energy of lithium ions, improve the conductivity of Co3O4 electrode material, promote the partial charge transfer throughout the charge and discharge cycles, and enhance the overall electrochemical performance of the material.

17.
Sensors (Basel) ; 23(9)2023 Apr 25.
Article En | MEDLINE | ID: mdl-37177476

Satellite edge computing has attracted the attention of many scholars due to its extensive coverage and low delay. Satellite edge computing research remains focused on on-orbit task scheduling. However, existing research has not considered the situation where heavily loaded satellites cannot participate in offloading. To solve this problem, this study first models the task scheduling of dynamic satellite networks as a minimization problem that considers both the weighted delay and energy consumption. In addition, a hybrid genetic binary particle swarm optimization (GABPSO) algorithm is proposed to solve this optimization problem. The simulation results demonstrate that the proposed method outperforms the other three baseline algorithms.

18.
EClinicalMedicine ; 59: 101970, 2023 May.
Article En | MEDLINE | ID: mdl-37131542

Background: The great heterogeneity of patients with chronic critical illness (CCI) leads to difficulty for intensive care unit (ICU) management. Identifying subphenotypes could assist in individualized care, which has not yet been explored. In this study, we aim to identify the subphenotypes of patients with CCI and reveal the heterogeneous treatment effect of fluid balance for them. Methods: In this retrospective study, we defined CCI as an ICU length of stay over 14 days and coexists with persistent organ dysfunction (cardiovascular Sequential Organ Failure Assessment (SOFA) score ≥1 or score in any other organ system ≥2) at Day 14. Data from five electronic healthcare record datasets covering geographically distinct populations (the US, Europe, and China) were studied. These five datasets include (1) subset of Derivation (MIMIC-IV v1.0, US) cohort (2008-2019); (2) subset Derivation (MIMIC-III v1.4 'CareVue', US) cohort (2001-2008); (3) Validation I (eICU-CRD, US) cohort (2014-2015); (4) Validation II (AmsterdamUMCdb/AUMC, Euro) cohort (2003-2016); (5) Validation III (Jinling, CN) cohort (2017-2021). Patients who meet the criteria of CCI in their first ICU admission period were included in this study. Patients with age over 89 or under 18 years old were excluded. Three unsupervised clustering algorithms were employed independently for phenotypes derivation and validation. Extreme Gradient Boosting (XGBoost) was used for phenotype classifier construction. A parametric G-formula model was applied to estimate the cumulative risk under different daily fluid management strategies in different subphenotypes of ICU mortality. Findings: We identified four subphenotypes as Phenotype A, B, C, and D in a total of 8145 patients from three countries. Phenotype A is the mildest and youngest subgroup; Phenotype B is the most common group, of whom patients showed the oldest age, significant acid-base abnormality, and low white blood cell count; Patients with Phenotype C have hypernatremia, hyperchloremia, and hypercatabolic status; and in Phenotype D, patients accompany with the most severe multiple organ failure. An easy-to-use classifier showed good effectiveness. Phenotype characteristics showed robustness across all cohorts. The beneficial fluid balance threshold intervals of subphenotypes were different. Interpretation: We identified four novel phenotypes that revealed the different patterns and significant heterogeneous treatment effects of fluid therapy within patients with CCI. A prospective study is needed to validate our findings, which could inform clinical practice and guide future research on individualized care. Funding: This study was funded by 333 High Level Talents Training Project of Jiangsu Province (BRA2019011), General Program of Medical Research from the Jiangsu Commission of Health (M2020052), and Key Research and Development Program of Jiangsu Province (BE2022823).

19.
Small ; 19(37): e2301906, 2023 Sep.
Article En | MEDLINE | ID: mdl-37140102

Aqueous zinc-ion batteries (ZIBs) have attracted extensive attention in recent years because of its high volumetric energy density, the abundance of zinc resources, and safety. However, ZIBs still suffer from poor reversibility and sluggish kinetics derived from the unstable cathodic structure and the strong electrostatic interactions between bivalent Zn2+ and cathodes. Herein, magnesium doping into layered manganese dioxide (Mg-MnO2 ) via a simple hydrothermal method as cathode materials for ZIBs is proposed. The interconnected nanoflakes of Mg-MnO2 possess a larger specific surface area compared to pristine δ-MnO2 , providing more electroactive sites and boosting the capacity of batteries. The ion diffusion coefficients of Mg-MnO2 can be enhanced due to the improved electrical conductivity by doped cations and oxygen vacancies in MnO2 lattices. The assembled Zn//Mg-MnO2 battery delivers a high specific capacity of 370 mAh g-1 at a current density of 0.6 A g-1 . Furthermore, the reaction mechanism confirms that Zn2+ insertion occurred after a few cycles of activation reactions. Most important, the reversible redox reaction between Zn2+ and MnOOH is found after several charge-discharge processes, promoting capacity and stability. It believes that this systematic research enlightens the design of high-performance of ZIBs and facilitates the practical application of Zn//MnO2 batteries.

20.
Sensors (Basel) ; 23(7)2023 Mar 28.
Article En | MEDLINE | ID: mdl-37050595

Atomic gravimeter has been more frequently applied under complex and dynamic environments, but its measurement accuracy is seriously hampered by vibration-induced noise. In this case, vibration compensation provides a way to enhance the accuracy of gravity measurements by correcting the phase noise that resulted from the vibration of a Raman reflector, and improving the fitting of an interference fringe. An accurate estimation of the transfer function of vibration between the Raman reflector and the sensor plays a significant role in optimizing the effect of vibration compensation. For this reason, a vibration compensation approach was explored based on EO (equilibrium optimizer) for estimating the transfer function simplified model of a Raman reflector, and it was used to correct the interference fringe of an atomic gravimeter. The test results revealed that this approach greatly restored the actual vibration of the Raman reflector in a complex vibration environment. With a vibration compensation algorithm, it achieved the correction and fitting of the original interference fringe. In general, it dramatically reduced the RMSE (root mean square error) at the time of fitting and significantly improved the residual error in the gravity measurement. Compared with other conventional algorithms, such as GA (genetic algorithm) and PSO (particle swarm optimization), this approach realized a faster convergence and better optimization, so as to ensure more accurate gravity measurements. The study of this vibration compensation approach could provide a reference for the application of an atomic gravimeter in a wider and more complex environment.

...