Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 251(Pt 2): 118673, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493845

RESUMEN

Both microplastics (MPs) and heavy metals are common soil pollutants and can interact to generate combined toxicity to soil ecosystems, but their impact on soil microbial communities (e.g., archaea and viruses) remains poorly studied. Here, metagenomic analysis was used to explore the response of soil microbiome in an agricultural soil exposed to MPs [i.e., polyethylene (PE), polystyrene (PS), and polylactic acid (PLA)] and/or Cd. Results showed that MPs had more profound effects on microbial community composition, diversity, and gene abundances when compared to Cd or their combination. Metagenomic analysis indicated that the gene taxonomic diversity and functional diversity of microbial communities varied with MPs type and dose. MPs affected the relative abundance of major microbial phyla and genera, while their coexistence with Cd influenced dominant fungi and viruses. Nitrogen-transforming and pathogenic genera, which were more sensitive to MPs variations, could serve as the indicative taxa for MPs contamination. High-dose PLA treatments (10%, w/w) not only elevated nitrogen metabolism and pathogenic genes, but also enriched copiotrophic microbes from the Proteobacteria phylum. Overall, MPs and Cd showed minimal interactions on soil microbial communities. This study highlights the microbial shifts due to co-occurring MPs and Cd, providing evidence for understanding their environmental risks.


Asunto(s)
Cadmio , Metagenómica , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Microplásticos/toxicidad , Agricultura , Microbiota/efectos de los fármacos , Suelo/química , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos
2.
Environ Technol ; : 1-14, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084650

RESUMEN

The application of organic additives is an efficient strategy to promote the vermicomposting of organic wastes. This study investigated the changes in earthworm growth, nutrients, enzyme activities, microbial composition, and seedling growth during 60 days of vermicomposting of white wine distillers' grains (WWDG) mixed (50:50, w/w) with green waste (GW), green waste compost (GWC), or cow dung (CD). Our data showed that GW, GWC, and CD addition significantly enhanced the survival rate (73.33%-89.17%), growth, and reproduction of earthworms compared to the control treatment. The degradation rate of TOC, the increasing rate of nutriments (total N, total P, total K, available P, available K, humic acid, NH4+, NO3-), and the germination index were significantly higher in the additive treatments than in the control treatment. Dehydrogenase, phosphatases, and urease activities were significantly elevated in the vermicompost amended with additives. The additives remarkably stimulated bacteria, such as Streptomyces, Steroidobacter, Bacillus, Luteibacter, and Rhodanobacter, etc., which were closely related to the biocontrol of phytopathogens and the decomposing recalcitrant substances. Moreover, additives significantly promoted the generation and growth parameters of tomato and lettuce seedlings when compared with the control. In summary, these results indicated that all three additives facilitated the vermicomposting of WWDG and improved the compost quality by enhancing earthworm and enzyme activities as well as altering compost bacterial community, especially when the GWC addition yields the best compost quality and shows strong potential for future application. This study developed a new method for improving WWDG utilization rate and it will promote organic waste recycling in China.

3.
Water Res ; 243: 120399, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499537

RESUMEN

Using mixed microbial cultures (MMCs) for oriented volatile fatty acids (VFAs) refining in an open environment is a typical challenge due to the microbial diversiform and the process complexity. Especially for carbohydrate-rich waste (such as food waste), butyrate-type fermentation is usually dominant in a single-stage MMCs anaerobic process, while the production of odd-carbon VFAs (such as propionate) is difficult although it plays a significant role in chemicals industries. In this study, firstly, we gave a new perspective on the rationality of the oriented propionate production using MMCs with lactate as feedstock by conducting in-depth microbial informatics and reaction analysis. Secondly, we verified the feasibility of the "food waste-lactate-propionate" route to reverse the original butyrate-type fermentation situation and explore mechanisms for maintaining stability. In the first stage, a defined lactate fermentation microbiome was used to produce lactate-containing broth (80% of total chemical oxygen demand) at pH=4. In the second stage, an undomesticated undefined anaerobic microbiome was used to drive propionate production (45.26% ± 2.23% of total VFAs) under optimized conditions (C/N = 100:1-200:1 and pH=5.0). The low pH environment in the first stage enhanced the lactic acid bacteria to resist the invasion of non-functional flanking bacteria, making the community stable. In the second stage, the system maintained the propionate-type fermentation due to the absence of the ecological niche of the invasive lactic acid bacteria; The selection of propionate-producing specialists was a necessary but not sufficient condition for propionate-type fermentation. At last, this study proposed an enhanced engineering strategy framework for understanding elaborate MMCs fermentation.


Asunto(s)
Propionatos , Eliminación de Residuos , Alimentos , Fermentación , Ácidos Grasos Volátiles , Ácido Láctico , Butiratos , Concentración de Iones de Hidrógeno , Reactores Biológicos , Aguas del Alcantarillado , Anaerobiosis
4.
J Hazard Mater ; 459: 132053, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37482040

RESUMEN

The study of anaerobic high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) biodegradation under sulfate-reducing conditions by microorganisms, including microbial species responsible for biodegradation and relative metabolic processes, remains in its infancy. Here, we found that a new sulfate-reducer, designated as Desulforamulus aquiferis strain DSA, could biodegrade pyrene and benzo[a]pyrene (two kinds of HMW-PAHs) coupled with the reduction of sulfate to sulfide. Interestingly, strain DSA could simultaneously biodegrade pyrene and benzo[a]pyrene when they co-existed in culture. Additionally, the metabolic processes for anaerobic pyrene and benzo[a]pyrene biodegradation by strain DSA were newly proposed in this study based on the detection of intermediates, quantum chemical calculations and analyses of the genome and RTqPCR. The initial activation step for anaerobic pyrene and benzo[a]pyrene biodegradation by strain DSA was identified as the formation of pyrene-2-carboxylic acid and benzo[a]pyrene-11-carboxylic acid by carboxylation Thereafter, CoA ligase, ring reduction through hydrogenation, and ring cracking occurred, and short-chain fatty acids and carbon dioxide were identified as the final products. Additionally, DSA could also utilize benzene, naphthalene, anthracene, phenanthrene, and benz[a]anthracene as carbon sources. Our study can provide new guidance for the anaerobic HMW-PAHs biodegradation under sulfate-reducing conditions.


Asunto(s)
Benzo(a)pireno , Hidrocarburos Policíclicos Aromáticos , Benzo(a)pireno/metabolismo , Anaerobiosis , Sulfatos/análisis , Pirenos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Antracenos/análisis , Biodegradación Ambiental
5.
Water Res ; 230: 119593, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36642028

RESUMEN

The synergistic metabolism by anammox cultures and nitrate-reducers for anaerobic PAH biodegradation is largely unknown, including whether anammox culture and which kind of anammox bacterium can perform nitrogen metabolism in the anaerobic PAH biodegradation processes, the inhibitory effect of PAH on anammox activity and nitrite on PAH-degrading nitrate-reducers activity, and the synergistic metabolic processes. Herein, an anammox culture that can eliminate nitrite accumulation and decrease inorganic carbon emission during anaerobic phenanthrene (a model of PAH in this study) biodegradation, the synergistic mechanism for phenanthrene biodegradation by a nitrate-reducer and such anammox culture, and the inhibition effect of phenanthrene on such anammox culture and nitrite on a phenanthrene-degrading nitrate-reducer were newly discussed. The results showed that nitrite largely accumulated during anaerobic phenanthrene biodegradation (nitrate accumulation is a common phenomenon for the biodegradation of refractory matter, including PAHs, by nitrate-reducers) by a nitrate-reducer, PheN2, which mineralizes phenanthrene to inorganic carbon, and nitrite was verified as an inhibiting factor for further biodegradation. Anaerobic phenanthrene biodegradation rates and nitrite concentrations (0-7 mM) appeared to have a negative linear correlation. The anammox culture that mainly contained Candidatus Kuenenia was newly found to efficiently reduce nitrite accumulation and inorganic carbon emissions and significantly promote biodegradation efficiency by ∼1.94-fold. Our results showed that phenanthrene absorbed in and on anammox cells had a more direct relationship with the inhibitory effect on anammox activity than phenanthrene in the environment, and 15.2 mg/gVSS phenanthrene absorbed in and on the cells (4 mM concentration in the culture) showed nearly complete inhibition of anammox culture in this study. In addition, few (less than 2% abundance) anammox bacteria were found to be enough for the removal of nitrite produced from anaerobic phenanthrene biodegradation. In an ideal world, co-pollutants of ammonia, nitrate, phenanthrene, and nitrite could be converted to nitrogen gas and biomass by the synergistic metabolism of anammox cultures and nitrate reducers. Our study reveals a new synergistic process that may exist in our environments for PAH elimination by an anammox culture and a nitrate-reducer, which provides a new strategy for the bioremediation of PAH-polluted anoxic zones.


Asunto(s)
Nitratos , Fenantrenos , Nitratos/metabolismo , Biodegradación Ambiental , Nitritos/metabolismo , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Bacterias/metabolismo , Anaerobiosis , Nitrógeno/metabolismo , Reactores Biológicos/microbiología
6.
J Environ Manage ; 325(Pt B): 116432, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36274337

RESUMEN

Maintaining humidification and inhibiting nitrogen losses during vermicomposting process have emerged to be key factors for high-quality productions. Previous data have showed outstanding functions of biochar addition in improving vermicomposting quality. In this study, the influence of bamboo biochar (BB) and rice husk biochar (RHB) addition on compost maturity, humification and nitrogen loss was evaluated in the vermicomposting of cattle manure and maize straw. Results revealed that BB or RHB amendment improved organic matter decomposition, enhanced humification and maturity of compost, particularly in the 10% BB treatment, which exerted the highest humic acids content and GI value. Furthermore, BB or RHB addition significantly reduced nitrogen losses, in which the volatilization of NH3 and N2O were reduced by 24.93%-66.23% and 14.91%-55.12%. The fewest nitrogen loss was detected in the treatment of 10% BB. Biochar inhibited nirK, nirS but promoted AOB-amoA, nosZ expression; fewer N2O producing bacteria (Pseudomonas, Devosia, Luteimonas genus) were observed in the biochar treatment, and thereby decreased the N2O emission. Therefore, 10% BB addition for co-vermicomposting cattle manure and maize straw is an efficient way to increase humification, maturity, and reduce nitrogen loss, and future applications following this strategy is believed to generate better productions.


Asunto(s)
Compostaje , Oryza , Sasa , Bovinos , Animales , Estiércol , Carbón Orgánico/metabolismo , Nitrógeno/metabolismo , Zea mays/metabolismo , Suelo , Oryza/metabolismo
7.
Environ Sci Technol ; 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36580666

RESUMEN

Polyhydroxyalkanoates (PHAs), a biodegradable plastic that might replace petroleum-based plastics, can be recovered from organic waste using mixed microbial cultures (MMCs). Research in this field has been ongoing for about 25 years and is now in a critical commercialization period. However, few pilot-scale studies are available to analyze its technical feasibility and environmental impact. We ran an MMC PHA production pilot plant for 6 months using local food waste as the feedstock. The traditional three-stage process achieved PHA content of 47.91 ± 1.91% dry cell weight and volumetric productivity of 9.94 ± 0.01 g/L·d, while a novel rapid proliferation stage was built in, the PHA content and productivity could reach 41.39 ± 2.39% cell dry weight and 20.02 ± 0.01 g/L·d, respectively. Life cycle assessment using field data showed that greenhouse warming potential was much more than five times that of the known literature, and the fossil depletion potential was 10.30 (scenario #1)/7.59 (scenario #2) times higher than petroleum-based polyethylene (PE) plastic. However, establishing a resource-energy-water union instead of an isolated plant could achieve environmental benefits compared to PE plastic. This techno-environmental analysis provides emerging MMC PHA producers worldwide with a valuable reference for further development opportunities and market planning.

8.
J Hazard Mater ; 435: 129085, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35650754

RESUMEN

The biodegradation of polycyclic aromatic hydrocarbons (PAHs) under hypersaline environments has received increasing attention, whereas the study of anaerobic PAH biodegradation under hypersaline environments is still lacking. Here, we found a pure culture designated PheN4, which was affiliated with Virgibacillus halodenitrificans and could degrade phenanthrene with nitrate as the terminal electron acceptor and a wide range of salinities (from 0.3% to 20%) under anaerobic environments. The optimal salinity for biodegradation of phenanthrene by PheN4 was 5%, which could degrade 93.5% of 0.62 ± 0.04 mM phenanthrene within 10 days with the initial inoculum of 0.01 gVSS/L. Meanwhile, an increased microbial amount could efficiently promote the phenanthrene biodegradation rate. The metabolic processes of anaerobic phenanthrene biodegradation under hypersaline conditions by PheN4 were proposed based on intermediates and genome analyses. Phenanthrene was initially activated via methylation to form 2-methylphenanthrene. Next, fumarate addition and ß-oxidation or direct oxidation of the methyl group, ring reduction and ring cleavage were identified as the midstream and downstream steps. In addition, PheN4 could utilize benzene, naphthalene, and anthracene as carbon sources, but Benz[a]anthracene, pyrene, and Benzo[a]pyrene could not be biodegraded by PheN4. This study could provide some guidance for the bioremediation of PAH pollutants in anaerobic and hypersaline zones.


Asunto(s)
Nitratos , Fenantrenos , Anaerobiosis , Antracenos , Biodegradación Ambiental , Nitratos/análisis , Fenantrenos/metabolismo , Virgibacillus
9.
J Healthc Eng ; 2022: 6938506, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35028123

RESUMEN

Syndrome differentiation is the most basic diagnostic method in traditional Chinese medicine (TCM). The process of syndrome differentiation is difficult and challenging due to its complexity, diversity, and vagueness. Recently, artificial intelligent methods have been introduced to discover the regularities of syndrome differentiation from TCM medical records, but the existing DM algorithms failed to consider how a syndrome is generated according to TCM theories. In this paper, we propose a novel topic model framework named syndrome differentiation topic model (SDTM) to dynamically characterize the process of syndrome differentiation. The SDTM framework utilizes latent Dirichlet allocation (LDA) to discover the latent semantic relationship between symptoms and syndromes in mass of Chinese medical records. We also use similarity measurement method to make the uninterpretable topics correspond with the labeled syndromes. Finally, Bayesian method is used in the final differentiated syndromes. Experimental results show the superiority of SDTM over existing topic models for the task of syndrome differentiation.


Asunto(s)
Inteligencia Artificial , Medicina Tradicional China , Algoritmos , Teorema de Bayes , Humanos , Medicina Tradicional China/métodos , Síndrome
10.
J Environ Manage ; 295: 113136, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34214797

RESUMEN

This study investigated the effectiveness of Gleditsia sinensis pod powder (GSPP), coconut shell biochar (CSB), rice husk biochar (RHB) and their mixtures on vermicomposting of pig manure and wheat straw using Eisenia fetida. The results indicated that the addition of GSPP or/and CSB and RHB could greatly enhance the relative abundance of Bacteroidetes, Actinobacteria, and Firmicutes, as well as the activities of celluloses, protease, and alkaline phosphatase. However, the earthworm biomass was increased in the GSPP and/or CSB addition treatments but decreased in RHB addition treatments compared with the control. Compared with the control, addition of 4%GSPP+8%CSB significantly (P < 0.05) accelerated the degradation of organic matter and increased the concentration of nutrients (total N, P, K), NO3--N in final vermicompost. Germination and growth of tomato seedings were also higher (P < 0.05) in vermicompost produced with the addition of 4%GSPP+8%CSB than in control. Consequently, 4%GSPP+8%CSB addition was suggested as an efficient method to improve the vermicomposting of pig manure and wheat straw.


Asunto(s)
Compostaje , Gleditsia , Oligoquetos , Oryza , Animales , Carbón Orgánico , Cocos , Estiércol , Polvos , Suelo , Porcinos , Triticum
11.
Sci Total Environ ; 797: 149148, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34311378

RESUMEN

Phenanthrene is a widespread and harmful polycyclic aromatic hydrocarbon that is difficult to anaerobically biodegrade. Current challenges in anaerobic phenanthrene bioremediation are a lack of degrading cultures and limited knowledge of biotransformation pathways. Under sulfate-reducing conditions, pure-cultures and biotransformation processes for anaerobic phenanthrene biodegradation are poorly understood. In this study, strain PheS1, which is phylogenetically closely related to Desulfotomaculum, was found to be a sulfate-reducing phenanthrene-degrading bacterium. Anaerobic phenanthrene biodegradation using PheS1 was proposed based on metabolite and genome analyses, and the initial step was identified as carboxylation based on the detection of 2-phenanthroic acid, [13C]-2-phenanthroic acid, and [D9]-2- phenanthroic acid when phenanthrene+HCO3-, phenanthrene+H13CO3-, and [D10]-phenanthrene+HCO3- were used as the substrate, respectively. PheS1 genome ubiD gene encoding of carboxylase putatively involved in the biodegradation was performed. Next, benzene ring reduction and cleavage that produced benzene compounds and cyclohexane derivative were reported to occur in the downstream biotransformation processes. Additionally, benzene, naphthalene, benz[a]anthracene, and anthracene can be utilised by PheS1, whereas pyrene and benz[a]pyrene cannot. We discovered a new phenanthrene-degrading sulfate-reducer and provided the anaerobic phenanthrene biotransformation pathway under sulfate-reducing conditions, which can act as a reference for practical applications in bioremediation and for studying the molecular mechanisms of phenanthrene in anaerobic zones.


Asunto(s)
Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Anaerobiosis , Biodegradación Ambiental , Biotransformación , Hidrocarburos Policíclicos Aromáticos/análisis , Sulfatos
12.
Build Environ ; 202: 108038, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34127876

RESUMEN

During the period of COVID-19, the number of residents infected in urban communities continued to rise, implying that most of the current building layouts can't effectively resist the spread of infectious diseases, and the outbreak of COVID-19 has led to the need of changes for the current building environment. Therefore, the epidemic prevention should be considered in the residential building design, and the health design of residential community should be carried out from the perspective of epidemic prevention. In order to improve the ability of epidemic prevention of residential buildings and deal with the sudden pandemic and influenza in the post-epidemic era, a Healthy Assessment System for Residential Building Epidemic Prevention (HASRBEP) was developed according to the epidemic impact on residential buildings, the design and measures of epidemic prevention for residential buildings and the Chinese Assessment standard for healthy building (T/ASC 02-2016). Both entropy weight method and expert scoring method were used to determine the specific weight of the index. The HASRBEP includes control item assessment, preliminary assessment and extension assessment. The newly developed HASRBEP was used to assess the residential buildings of the Yulongzhuang Building Community located in Quanzhou, Fujian Province, China. The results show that the HASRBEP can be used to guide the health and epidemic prevention design of residential buildings.

13.
Bioresour Technol ; 333: 125149, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33901914

RESUMEN

The effects of temperature (35 °C and 55 °C) and pH (uncontrolled, 7 and 10) on volatile fatty acid (VFA) yields from anaerobic codigestion of food waste, and thermal-hydrolysed sewage sludge were investigated in this study. The results revealed that optimal conditions for VFA production occurred at 35 °C at pH 7 and at 10 and 55 °C at pH 7. The dominant bacterial genera associated with VFA production significantly differed when the temperature and pH were altered, including Prevotella, Lactobacillus, Bifidobacterium Megasphaera, Clostridium XlVa, and Coprothermobacter. A temperature of 35 °C at pH 7 favoured mixed acid-type fermentation, while a temperature of 35 °C at pH 10 and 55 °C at pH 7 favoured butyric acid-type fermentation. The maximal polyhydroxyalkanoate content accounted for 54.8% of the dry cell at 35 °C with pH 7 fermentative liquids and comprised 58.9% 3-hydroxybutyrate (3HB) and 41.1% 3-hydroxyvalerate (3HV).


Asunto(s)
Polihidroxialcanoatos , Eliminación de Residuos , Reactores Biológicos , Ácidos Grasos Volátiles , Fermentación , Alimentos , Concentración de Iones de Hidrógeno , Polihidroxialcanoatos/metabolismo , Aguas del Alcantarillado , Temperatura
14.
J Hazard Mater ; 409: 124522, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33229262

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and harmful contaminants, which can be degraded aerobically. However, the persistence of PAHs in anoxic environments indicates that anaerobic biodegradation of PAHs should also be investigated. Pure-culture and biotransformation processes for anaerobic phenanthrene biodegradation with sulfate as a terminal electron acceptor remains in its infancy. In this study, we investigated anaerobic biodegradation of PAHs by PheS2, an isolated phenanthrene-utilizing sulfate-reducer, using phenanthrene as a model compound. PheS2 was phylogenetically closely related to Geobacter sulfurreducens and reduced sulfate to sulfide during anaerobic phenanthrene biodegradation. Phenanthrene biodegradation processes were detected using gas chromatography-mass spectrometry, genome, and reverse transcription quantitative PCR analyses. Carboxylation was the initial step of anaerobic phenanthrene biodegradation based upon detection of 2- and 4-phenanthroic acid, its isotopically labeled analogs when using 13C-labeled bicarbonate and fully deuterated-phenanthrene (C14D10), and genes encoding enzymes putatively involved in the biodegradation. Further, ring-system reducing and cleavage occurred, and substituted benzene series and cyclohexane derivatives were detected in downstream biotransformation metabolites. Additionally, PheS2 can degrade benzene, naphthalene, anthracene, and benz[a]anthracene, but not pyrene and benz[a]pyrene. This study describes the isolation of an anaerobic phenanthrene-degrading sulfate-reducer, the first pure-culture evidence of phenanthrene biotransformation processes with sulfate as an electron acceptor.


Asunto(s)
Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Anaerobiosis , Biodegradación Ambiental , Geobacter , Hidrocarburos Policíclicos Aromáticos/análisis , Sulfatos
15.
Sci Total Environ ; 750: 142245, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33182168

RESUMEN

The study of biodegradation of polycyclic aromatic hydrocarbons (PAHs) with metal ions as electron acceptors is still in its infancy. Here, a pure culture of PheF2 sharing 99.79% 16S rRNA-sequence similarity with Trichococcus alkaliphilus, which was recently reported to degrade PAHs, was isolated and found to degrade PAHs with Fe (III) or O2 reduction. Phenanthrene was selected as a model of PAH to study the biodegradation process by PheF2 with Fe (III) or O2 as an electron acceptor. PheF2 exhibited nearly 100%, 37.1%, and 28.5% anaerobic biodegradation of phenanthrene at initial concentrations of 280.7 µM, 280.6 µM, and 281.3 µM, respectively, within 10 days under anaerobic conditions with XAD-7 as a carrier, heptamethylnonane (HMN) as a solution, and nothing, respectively. PheF2 could degrade nearly 100% of the initial phenanthrene concentration of 283.4 µM under aerobic conditions within three days. The initial step of phenanthrene biodegradation by PheF2 involved carboxylation and dioxygenation under anaerobic and aerobic conditions, respectively. The biotransformation processes of phenanthrene degradation by PheF2 with Fe(III) or O2 as an electron acceptor were explored by metabolite and genome analysis. These findings provide an important theoretical support for evaluation of PAHs fate and for PAHs pollution control or remediation in anaerobic and aerobic environments.


Asunto(s)
Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Biodegradación Ambiental , Biotransformación , Carnobacteriaceae , Electrones , Compuestos Férricos , Hidrocarburos Policíclicos Aromáticos/análisis , ARN Ribosómico 16S
16.
Sci Total Environ ; 715: 136846, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32040993

RESUMEN

The use of exogenous silicon (Si) amendments, such as Si fertilizers and biochar, can effectively increase crop Si uptake and the formation of phytoliths, which are siliceous substances that are abundant in numerous plant species. Phytolith-occluded carbon (C) (PhytOC) accumulation in soil plays an important role in long-term soil organic C (SOC) storage. Nevertheless, the effects of both Si fertilizer and biochar application on PhytOC sequestration in forest plant-soil systems have not been studied. We investigated the impact of Si fertilizer and biochar applications on 1) the PhytOC pool size, the solubility of plant and soil phytoliths, and soil PhytOC in soil physical fractions (light (LFOM) and heavy fractions of organic matter (HFOM)) in Moso bamboo (Phyllostachys pubescens) forests; and 2) the relationships among plant and soil PhytOC concentrations and soil properties. We used a factorial design with three Si fertilizer application rates: 0 (S0), 225 (S1) and 450 (S2) kg Si ha-1, and two biochar application rates: 0 (B0) and 10 (B1) t ha-1. The concentrations of PhytOC in the bamboo plants and topsoil (0-10 cm) increased with increasing Si fertilizer addition, regardless of biochar application. Biochar addition increased the soil PhytOC pool size, as well as the LFOM- and HFOM-PhytOC fractions, regardless of Si fertilizer application. The Si fertilizer application increased or had no effect on soil phytolith solubility with or without biochar application, respectively. Soil PhytOC was correlated with the concentration of soil organic nitrogen (R2 = 0.32), SOC (R2 = 0.51), pH (R2 = 0.28), and available Si (R2 = 0.23). Furthermore, Si fertilizer application increased plant and soil PhytOC by increasing soil available Si. Moreover, biochar application increased soil PhytOC concentration in LFOM-PhytOC and the unstable fraction of PhytOC. We conclude that Si fertilizer and biochar application promoted PhytOC sequestration in the plant-soil system and changed its distribution in physical fractions in the Moso bamboo plantation in subtropical China.


Asunto(s)
Fertilizantes , Carbono , Carbón Orgánico , China , Silicio , Suelo
17.
J Environ Manage ; 248: 109263, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31336340

RESUMEN

Garden wastes (GW) having high lignin contents could hinder the growth of earthworms and microorganisms in vermicomposting. This study investigated the Eisenia fetida-based vermicomposting of GW mixed with cattle manure (CM) and/or spent mushroom substrate (SMS) at different ratios of GW alone (control), 3:1 GW:SMS, 1:1 GW:SMS, 3:1 GW:CM, 1:1 GW:CM and 2:1:1 GW:SMS:CM to promote earthworm growth and improve the final vermicompost quality. In general, treatments with the addition of SMS and/or CM increased the survival rate, biomass, cocoon and juvenile numbers of E. fetida compared to the control. The addition of SMS and/or CM also significantly increased the activities of dehydrogenase, cellulase, urease, and alkaline phosphatase compared to the control. Furthermore, the addition of SMS and/or CM facilitated the decomposition of organic matter, cellulose and lignin, increased nutrient (N, P and K) concentrations, and accelerated nitrification compared to the control. The addition of SMS and CM led to greater chemical changes of the substrate compared to control. Heavy metal concentrations were increased in the final vermicomposts comparatively to the initial materials, but none of them exceeded the permissible limits. The highest germination index of Chinese cabbage and tomato seeds were both observed in the treatment of 2:1:1 GW:SMS:CM which reached 146.9 and 148.1. Overall, the 2:1:1 GW:SMS:CM treatment had the highest growth and reproduction rates of E. fetida, higher percentage degradation of organic matter, cellulose and lignin, as well as the best quality of the final vermicompost.


Asunto(s)
Agaricales , Oligoquetos , Animales , Bovinos , Jardines , Estiércol , Suelo
18.
J Biosci Bioeng ; 127(6): 698-702, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30709705

RESUMEN

Coenzyme Q10 (CoQ10) plays an important role in the human respiratory chain and is widely used as medicine and dietary supplement. To improve the fermentation efficiency of CoQ10, a modified version of atmospheric and room temperature plasma (ARTP) treatment was used to mutate Rhodobacter sphaeroides. Meanwhile, Vitamin K3, a structural analog of CoQ10, was used as an inhibitor for mutant selection. In the first round of screening in 24-well plates, three mutants were obtained, with the production of CoQ10 at 311 mg/L, 307 mg/L, and 309 mg/L, which were increased from the parent's production at 265 mg/L. Furthermore, a second round of mutation and screening was performed based on the mutant strain with the highest production in the first round, leading to the identification of a mutant AR01 with the production of CoQ10 at ∼330 mg/L. Finally, 590 mg/L CoQ10 was obtained for AR01 after 100 h fermentation, which was ∼25.5% higher than that of the original parent strain. It is the first report of ARTP treatment usage for the selection of CoQ10 producing bacteria and the results show that plasma jet, driven by helium-based ARTP, can be a feasible strategy for mutation feeding.


Asunto(s)
Atmósfera , Mutagénesis , Gases em Plasma/farmacología , Rhodobacter sphaeroides/efectos de los fármacos , Rhodobacter sphaeroides/genética , Temperatura , Ubiquinona/análogos & derivados , Fermentación/efectos de los fármacos , Mutación , Rhodobacter sphaeroides/metabolismo , Ubiquinona/biosíntesis
19.
Ecotoxicol Environ Saf ; 167: 459-466, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30368139

RESUMEN

Managing municipal green waste is a challenge to municipalities, partly because of the slow rate of decomposition of green waste during composting due to its high lignin and cellulose contents. Hence, this study evaluated the effect of alkyl polyglycoside (APG), a biosurfactant, and the earthworm Eisenia fetida on the composting process. Addition of APG and E. fetida significantly increased total bacteria, cellulolytic fungi, phosphate solubilizing bacteria and nitrogen fixing bacteria populations, and the activities of cellulase, urease and alkaline phosphatase in composts as compared with the control. The APG and earthworm treatments also increased surface roughness and porosity of the green waste; Compared with control, APG and earthworm addition increased the degradation rate of TOC, lignin and cellulose by 5.9-17.9, 10.3-32.0 and 10.8-18.8%, respectively, and resulted in better compost quality, as was reflected in the neutral pH, higher cation exchange capacity (CEC) and nutrient concentrations (N, P, K, Ca, Mg, Fe, Cu, Zn, Mn). Final germination percentage and growth rate of tomato, eggplant and pepper seedlings were higher (P < 0.05) or similar in all composts produced with the addition of APG and earthworm, while plant growth was lower (P < 0.05) in the compost produced with the control than in peat substrate. The combination of APG+E. fetida enhanced the decomposition of green waste and improved final compost quality the most. Further research is needed to determine the best level of APG addition and optimum earthworm density for composting green waste.


Asunto(s)
Biodegradación Ambiental , Oligoquetos/metabolismo , Desarrollo de la Planta , Verduras/crecimiento & desarrollo , Fosfatasa Alcalina/metabolismo , Animales , Capsicum/crecimiento & desarrollo , Celulasa/metabolismo , Fenómenos Químicos , Compostaje , Concentración de Iones de Hidrógeno , Lignina/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Bacterias Fijadoras de Nitrógeno/metabolismo , Plantones/crecimiento & desarrollo , Suelo/química , Microbiología del Suelo , Solanum melongena/crecimiento & desarrollo , Tensoactivos/metabolismo , Ureasa/metabolismo
20.
PLoS One ; 13(11): e0207494, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30475832

RESUMEN

This research was conducted to compare chemical and microbiological properties during aerobic composting (AC) and vermicomposting (VC) of green waste. Relative to AC, VC significantly decreased the pH and lignin and cellulose contents, and significantly increased the electrical conductivity and total N and available P contents. For AC, BIrii41_norank (order Myxococcales) was the major bacterial genus at 30 d and again became dominant genus from 90-150 d, with relative abundances of 2.88% and 4.77-5.19%, respectively; at 45 d and 60 d, the dominant bacterial genus was Nitrosomonadaceae_uncultured (order Nitrosomonadales) with relative abundances of 2.83-7.17%. For VC, the dominant bacterial genus was BIrii41_norank (except at 45 d), which accounted for 2.11-7.96% of the total reads. The dominant fungal class was Sordariomycetes in AC (relative abundances 39.2-80.6%) and VC (relative abundances 42.1-69.5%). The abundances of microbial taxa and therefore the bacterial and fungal community structures differed between VC and AC. The quality of the green waste compost product was higher with VC than with AC. These results will also help to achieve further composting technology breakthroughs in reducing the composting time and improving compost quality.


Asunto(s)
Celulosa/química , Compostaje/métodos , Lignina/química , Myxococcales/crecimiento & desarrollo , Nitrosomonadaceae/crecimiento & desarrollo , Aerobiosis , Celulosa/metabolismo , Lignina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...