Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Sci Total Environ ; 924: 171634, 2024 May 10.
Article En | MEDLINE | ID: mdl-38471585

In recent years, the escalating attention on Pharmaceutical and Personal Care Products (PPCPs) and Heavy Metals in urban stormwater runoff highlights the critical role of Road-deposited sediments (RDS) as a significant carrier for pollutant occurrence and transport in runoff. However, existing research has overlooked the composite characteristics of PPCPs and Heavy Metals, hampering a holistic understanding of their transformation in diverse forms within runoff. This limitation impedes the exploration of their subsequent migration and conversion properties, thereby obstructing coordinated strategies for the control of co-pollution in runoff. This study focuses on the typical PPCP sulfamethoxazole (SMX) and heavy metal Cu(II) to analyze their occurrence characteristics in the Runoff-RDS system. Kinetics and isotherm studies reveal that RDS effectively accumulates SMX and Cu(II), with both exhibiting rapid association with RDS in the early stages of runoff. The accumulation of SMX and Cu(II) accounts for over 80 % and 70 % of the total accumulation within the first 240 min and 60 min, respectively. Moreover, as runoff pH values decrease, the initially synergistic effect between the co-pollutant transforms into an antagonistic effect. In the composite system, varying pH values from 2.0 to 6.0 lead to an increase in SMX accumulation from 4.01 mg/kg to 6.19 mg/kg and Cu(II) accumulation from 0.43 mg/g to 3.39 mg/g. Compared to the single system, the composite system capacity for SMX and Cu(II) increases by 0.04 mg/kg and 0.33 mg/g at pH 4.0. However, at pH 3.0, the composite system capacity for SMX and Cu(II) decreases by 0.21 mg/kg and 0.36 mg/g, respectively. Protonation/deprotonation of SMX under different pH conditions influences electrostatic repulsion/attraction between SMX and RDS. The mechanism of RDS accumulation of SMX involves Electron Donor-Acceptor (EDA) interaction, hydrogen bond interaction, and Lewis acid-base interaction. Cu(II) enrichment on RDS includes surface complexation reaction, electrostatic interaction, and surface precipitation. Complex formation enhances the accumulation of both SMX and Cu(II) on RDS in runoff. This study elucidates the co-occurrence characteristics and mechanisms of SMX and Cu(II) co-pollution in runoff systems. The findings contribute valuable insights to understanding the existence patterns and mechanisms of co-pollution, providing a reference for investigating the migration and fate of co-pollutant in runoff. Moreover, these insights could offer guidance for the development of effective strategies to mitigate co-pollution in rainwater.

2.
Environ Sci Pollut Res Int ; 31(15): 22962-22975, 2024 Mar.
Article En | MEDLINE | ID: mdl-38418787

As the most common filler in stormwater treatment, zeolite (NZ-Y) has good cation exchange capability and stabilization potential for the removal of heavy metal from aqueous solutions. In this study, sodium dodecyl sulfate (SDS) and NZ-Y were selected to preparing new adsorbent (SDS-NZ) by using a simple hydrothermal method. The sorption-desorption performance and mechanism of Cu(II) onto SDS-NZ were investigated. The results showed that the sorption of Cu(II) on SDS-NZ was in accordance with the pseudo-second-order kinetic model with an equilibrium time of 4 h. The sorption behavior fitted Langmuir isotherm with a saturation sorption capability of 9.03 mg/g, which was three times higher than that of NZ-Y. The modification of SDS increases the average pore size of NZ-Y by 3.96 nm, which results in a richer internal pore structure and more useful sorption sites for Cu(II) sorption. There was a positive correlation between solution pH values and sorption capability of Cu(II) in the range of 3.0-6.0. With the ionic strength increased, the sorption capability of Cu(II) onto SDS-NZ first decreased and then increased, which may be attributed to competitive sorption and compression of the electronic layer. The desorption of Cu(II) on SDS-NZ was favored by the increase in SDS concentration and ionic strength and decrease in solution pH values. The application of SDS-NZ in runoff improved the leaching risk of Cu(II). After several cycles, the ability of reused SDS-NZ to efficiently adsorb most heavy metals was verified with removal rates above 99%.


Metals, Heavy , Water Purification , Zeolites , Copper/chemistry , Zeolites/chemistry , Surface-Active Agents , Rain , Water Purification/methods , Water Supply , Adsorption , Hydrogen-Ion Concentration , Kinetics , Solutions
3.
J Environ Manage ; 350: 119671, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38039706

The simultaneous presence of heavy metals and surfactants in runoff induces complexation and ecological harm during migration. However, interactions between these pollutants are often overlooked in past studies. Thus, investigating heavy metal-surfactant complexes in runoff is imperative. In this work, Cu (II) and sodium dodecyl sulfate (SDS) were selected to investigate the interaction between heavy metals and surfactants due to the higher detected frequency in runoff. Through 1H NMR and FTIR observation of hydrogen atom nuclear displacement and functional group displacement of SDS, the change of SDS and Cu (II) complexation was obtained, and then the complexation form of Cu (II) and SDS was verified. The results showed that solution pH values and ionic strength had significant effects on the complexation of Cu (II). When the pH values increase from 3.0 to 6.0, the complexation efficiency of SDS with Cu (II) increased by 12.12% at low concentration of SDS, which may be attributed to the excessive protonation in the aqueous solution at acidic condition. The increase of ionic strength would inhibit the complexation reaction efficiency by 19.57% and finally reached the platform with concentration of NaNO3 was 0.10 mmol/L, which was mainly due to the competitive relationship between Na (I) and Cu (II). As a general filtering material in stormwater treatment measures, natural zeolite could affect the interaction between SDS and Cu (II) greatly. After the addition of SDS, the content of free Cu (II) in the zeolite-SDS-Cu (II) three-phase mixed system was significantly reduced, indicating that SDS had a positive effect on the removal of Cu (II) from runoff. This study is of great significance for investigating the migration and transformation mechanism of SDS and Cu (II) in the future and studying the control technology of storm runoff pollution.


Metals, Heavy , Water Pollutants, Chemical , Water Purification , Zeolites , Sodium Dodecyl Sulfate/chemistry , Rain , Water Purification/methods , Water Supply , Metals, Heavy/chemistry , Surface-Active Agents , Water Pollutants, Chemical/chemistry
4.
Sci Total Environ ; 903: 166522, 2023 Dec 10.
Article En | MEDLINE | ID: mdl-37625714

In situ bioremediation through slow-release agents can continuously degrade organic pollutants for a long time and have high application potential in solving problems such as tailing and rebound. However, the existing evaluation system is difficult to reflect the performance of bioremediation through slow-release agents, which is not conducive to the promotion of technology. It is urgent to establish a targeted evaluation system. Therefore, based on the multi-criteria decision-making method (MCDA), a comprehensive evaluation model was established. The evaluation index system was constructed for bioremediation through slow-release agents consisting of 16 indicators including pollutant degradation rate, agent preparation cost, engineering operation and maintenance cost, secondary pollution, long-term degradation stability, slow release time, slow release stability, increase in functional microbial flora, increase in total DNA content, agent particle size, solid agent morphology, liquid agent viscosity, dispersibility in aqueous phase, zeta potential, operability of agent preparation, and engineering operation management difficulty. Then, the weight of the indicators was determined by using the best-worst method (BWM), and evaluation criteria was established based on relevant norms and literature. Both and the indicators aggregation simple additive weighting (SAW) method constitute a quantitative evaluation model. The above content together constitutes a new evaluation system for biological remediation on organic pollution in groundwater using slow-release agents, which was defined as AOBS evaluation system. In order to verify the rationality and scientificity of the evaluation system, a typical bioremediation slow-release agent was evaluated using the established AOBS evaluation system. The results showed that the evaluation system could reasonably and comprehensively evaluate bioremediation through slow-release agents and provide suggestions for agent improvement.

5.
Sci Total Environ ; 866: 161397, 2023 Mar 25.
Article En | MEDLINE | ID: mdl-36608825

Reactive oxygen species (ROS) are ubiquitous in the natural environment that are generated by chemical or biochemical processes. Plastic rainwater facilities, as an important part of modern rainwater systems, are inevitably deteriorated by ROS. As a consequence, microplastics will be released. However, information on how ROS affect the ageing characteristics of plastic rainwater facilities and the subsequent microplastic release behavior is still insufficient. To address this knowledge gap, Fenton reagents were used to simulate the reactive oxygen species (ROS) induced ageing process of three typical plastic rainwater components (rainwater pipe, made of polyvinyl chloride; modular storage tank, made of polypropylene; inspection well, made of high-density polyethylene) and the subsequent microplastic release behavior. After 6 days of Fenton ageing, an increase in sharpness, holes, and fractures on the rainwater facilities' surface was observed by scanning electron microscope (SEM). The functional group changes on the rainwater facilities' surface were analyzed by Fourier transform infrared spectrometer (FTIR) and two-dimensional correlation spectroscopy (2D-COS) and compared with the results of X-ray photoelectron spectroscopy (XPS). During the ageing process, oxygen-containing functional groups were generated and the carbon chains were broken, which promoted peeling and the release of microplastics. The amount of released microplastics (ranging from 158 to 6617 items/g facility) varied with the type of rainwater facilities, and the order was modular storage tank > inspection well > rainwater pipe. The release amount increased with ageing time, and a significant linear relationship was observed (r2 > 0.91). The particle size of the released microplastics ranged from 2 to 1362 µm, among which 10-30 µm particles accounted for the largest proportion (62.7 %). The release amount increased exponentially with decreasing particle size (r2 > 0.71). This study indicates that large amounts of microplastics could be released from plastic rainwater components during ROS-induced ageing.

6.
Environ Sci Pollut Res Int ; 30(15): 44591-44606, 2023 Mar.
Article En | MEDLINE | ID: mdl-36694065

A series of complex physical and chemical processes, such as interception, migration, accumulation, and transformation, can occur when pollutants in stormwater runoff enter the growing media layer of bioretention facilities, affecting the purification of stormwater runoff by bioretention facilities. The migration and accumulation of pollutants in the growing media layer need long-term monitoring in traditional experimental studies. In this study, we established the Hydrus-1D model of water and solution transport for the bioretention facilities. By analyzing the variation of cumulative fluxes of NO3--N and Pb with time and depth, we investigated pollutant migration and accumulation trends in the growing media layer of bioretention facilities. It can provide support for reducing runoff pollutants in bioretention facilities. The Hydrus-1D model was calibrated and verified with experimental data, and the input data (runoff pollutant concentration) for the pollutant concentration boundary was obtained from the SWMM model. The results demonstrated that the cumulative fluxes of NO3--N and Pb increased with the passage of simulation time and depth of the growing media layer overall. From the top to the bottom of the growing media layer, the change rates of the peak cumulative fluxes of NO3--N and Pb were strongly linked with their levels in the runoff. An increase in rainfall decreased the content of NO3--N and Pb in the growing media layer, and this phenomenon was more obvious in the lower part of the layer.


Environmental Pollutants , Water Pollutants, Chemical , Lead , Rain , Water Pollutants, Chemical/analysis
7.
J Environ Manage ; 329: 117042, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36566735

As one of the commonly used stormwater management measures, permeable pavement system (PPS) played a prominent role in controlling runoff pollution and alleviating urban waterlogging. In this study, new enhanced infiltration materials (construction waste brick, coal gangue, activated carbon, multi-walled carbon nanotube, multi-layer graphene) were applied in PPS and the control efficiency and mechanism of typical heavy metals (HMs, Mn2+, Pb2+, Zn2+, Cu2+, Cd2+, Ni2+) was investigated in runoff. Furthermore, the influences of different rainfall intensities and antecedent dry periods on HMs removal by PPS were evaluated. The results showed that all PPS with enhanced infiltration materials have little leaching effect on HMs (<3 µg/L). All the selected enhanced infiltration materials meet the requirements of PPS. The concentration of HMs in the effluent of PPS dropped sharply first, followed rebounded and then maintained at a stable range. Activated carbon PPS (AC), Multi-walled carbon nanotube PPS (MCN), and Multi-layer graphene PPS (MG) could significantly improve the control effect of PPS on nearly all selected HMs. The average removal rates of AC, MCN and MG for six HMs were 75.48%-99.35%, 81.30%-97.59%, and 73.03%-99.33%, respectively. Compared with Traditional PPS (TR), the effluent concentrations of HMs in construction waste brick PPS (CW) and coal gangue PPS (CG) were relatively higher and unstable. AC, CN and MG could adapt to different rainfall conditions and the maximum removal rates of most HMs exceed to 99%. With antecedent dry periods increased, the control effect of HMs was significantly improved. The influences of the antecedent drying period on HMs removal followed as: CW>CG>TR>MG>CN>AC. This study provided novel methods to eliminating HMs in runoff and provides implications for the design of PPS.


Graphite , Metals, Heavy , Nanotubes, Carbon , Water Pollutants, Chemical , Charcoal , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Coal , Environmental Monitoring
8.
Environ Sci Pollut Res Int ; 29(47): 71100-71112, 2022 Oct.
Article En | MEDLINE | ID: mdl-35595898

In recent years, the co-contamination of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) has attracted more and more attention, and finding efficient and coordinated removal method has been the hot focus. In this study, Fe/Mn-SBA15 bimetallic mesoporous silica adsorbent (Fe/Mn-SBA15) was prepared by hydrothermal method with the functional groups Fe and Mn simultaneously doped into the framework structure of SBA15. Fe/Mn-SBA15 was systematically characterized by XRD, TEM, and BET and used in removal of typical PAHs-pyrene and heavy metal-Cu (II) from aqueous solutions simultaneously. The single and binary adsorption behaviors were studied by kinetics, isotherm, pH, and ionic strength. The results showed that the functional groups of Fe and Mn were successfully loaded into the structure of SBA15 and the prepared adsorbent was still a typical mesoporous adsorbent. The adsorption of pyrene and Cu (II) onto Fe/Mn-SBA15 was fast and the adsorption equilibrium was achieved in 100 min. The Langmuir model fitted the adsorption isotherm better and the maximum adsorption capacities for pyrene and Cu (II) were 120 mg/g and 10.52 mg/g, respectively. The increase of ionic strength could enhance and decrease the adsorption capacity of pyrene and Cu (II), which may be attributed to salting-out effect and potassium competitive. With the increase of pH values, the negative charge on the surface of the adsorbent increased, resulting in the decrease and increase of adsorption capacity of pyrene and Cu (II) onto Fe/Mn-SBA15. In addition, Fe/Mn-SBA15 was found to have a synergistic effect on the adsorption of pyrene and Cu (II). This result is mainly due to the formation of hydration complex by pyrene-Cu (II) through cation-π interaction, which increases the adsorption capacity by occupying each other's adsorption sites of adsorbent. This study provides a new method for the synergistic removal of PAHs and HMs from aqueous solutions.


Metals, Heavy , Water Pollutants, Chemical , Adsorption , Cations , Kinetics , Potassium , Pyrenes , Silicon Dioxide/chemistry , Solutions , Water/chemistry , Water Pollutants, Chemical/chemistry
9.
J Environ Manage ; 314: 115044, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35427943

In this study, coal gangue (CG) was applied as media in bioretention system to remove runoff pollutant. CG modified bioretention systems show good removal efficiency towards runoff pollutant due to the high adsorption capacity of CG. The removal of total phosphorus (TP), total nitrogen (TN), ammonia (NH4+-N) and chemical oxygen demand (COD) by CG modified bioretention systems was influenced by diverse rainfall conditions including rainfall concentration, recurrence period and drying period, and their removal rate ranged 94-99%, 30-70%, 83-97% and 33-86%, respectively. The effluent concentration of Zn, Pb and Cu was as low as 3.14-10.99 µg/L, 0.66-2.56 µg/L and 0.60-3.15 µg/L, respectively. In addition, CG could promote the plant heavy metal uptake and thus decrease their accumulation in soil to a certain extent. Meanwhile, Malondialdehyde (MDA) content and peroxidases (POD) activities of plants in CG modified bioretention were lower than that in tradition bioretention, indicating that CG could help plants recovery and lessened the oxidative stress for the negative impact of high heavy metals accumulation. CG-based media alleviated the inhibitory effect of rainwater runoff pollutant accumulation (especially heavy metals) on microbial diversity and the enhancement of the dominant bacteria (such as Proteobacteria and Bacteroidota) could conduce the nutrients removal in the bioretention systems. In overall, this study demonstrated that the CG modified bioretention systems show an excellent removal performance combine with biological effects.


Environmental Pollutants , Metals, Heavy , Water Pollutants, Chemical , Coal , Phosphorus , Rain , Water Pollutants, Chemical/analysis
10.
Sci Total Environ ; 813: 152674, 2022 Mar 20.
Article En | MEDLINE | ID: mdl-34971679

As the demand for urban flood prevention and drainage increases, a large number of plastic rainwater facilities are in use. Microplastics will be released inevitably into stormwater systems during aging and hydraulic scouring processes, which could cause potential pollution risk. This study simulated the release behavior of microplastics from three typical plastic rainwater facilities including a rainwater inspection well, rainwater storage module, and rainwater pipe (mainly composed of high-density polyethylene, polypropylene, and polyvinyl chloride, respectively) under the effects of aging and hydraulic scouring. After 15-45 days of UV aging and 72 h of hydraulic scouring, the surfaces of the three facilities were found to exhibit increases in roughness, cracks, folds, and cavities, with the most pronounced changes occurring in the rainwater storage module. As the aging time increased, oxygen-containing functional groups formed and led to carbon chain scission. Fourier transform infrared spectroscopy (FTIR), two-dimensional correlation spectroscopy (2D-COS) and X-ray photoelectron spectroscopy (XPS) of facility surfaces showed that the formation of oxygen-containing functional groups was an important factor affecting the release of microplastics. The amount of microplastics released from the three facilities ranged from 160 to 1905 items/g (microplastics/facilities), following in the order of rainwater inspection well > rainwater storage module > rainwater pipe. The particle size of the released microplastics ranged from 3 to 1363 µm, with 10-30 µm accounting for the greatest proportion of particles, 50.10%. The size of microplastics released from the rainwater inspection well and rainwater storage module increased with the aging degree, while the release from the rainwater pipe decreased. The release behavior depends mainly on the composition of the materials and the aging time. Thus, microplastics can be released from plastic rainwater facilities under suitable conditions. The results can be used to further evaluate microplastic pollution caused by urban rainwater facilities.


Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Plastics , Polyethylene , Water Pollutants, Chemical/analysis
11.
Arch Environ Contam Toxicol ; 82(2): 227-238, 2022 Feb.
Article En | MEDLINE | ID: mdl-34490489

Stormwater runoff samples were collected from five different land use sites (gas station, city road, campus, park, and residential) in a precipitation event on May 22nd, 2017, from a small suburban area (5 km × 2 km) of the city of Beijing, China. There were 72 types of semi-volatile organic compounds (SVOCs) found in these runoff samples, including 33 types of monocyclic aromatic hydrocarbons (MAHs), 22 types of polycyclic aromatic hydrocarbons (PAHs), 6 types of phthalate esters (PAEs), 9 types of pesticides and 2 types of polychlorinated biphenyls (PCBs). Especially, 26 types of SVOCs (7 MAHs, 9 PAHs, 5 PAEs, and 5 pesticides) were detected in all water samples. SVOCs concentrations were higher in the samples from gas station and city road, and lower in runoff from campus, park and residential sites. The change in the ratio of anthracene to anthracene plus phenanthrene (ANT/(ANT + PHE)) in this study, reflected the importance of PAH source and land use. Di-2-ethylhexyl phthalate (DEHP) and di-n-butyl phthalate, are two of the phthalate esters 100% detected in the runoff samples. The city road runoff DEHP concentrations recorded the highest values (> 6000 ng/L), however, were still less than those wastewater DEHP pollutants measured in developed countries (e.g. UK, Canada, Finland, etc.). One-way ANOVA analysis in this study, showed that land use could significantly influence 23 SVOCs in the runoff samples, whereas the runoff SVOCs in different precipitation period showed no statistical changes in the five sites, and presented a general temporal trends "high (beginning)-low (middle period)-little raising (ending)". The findings in this study could be used in municipal management of wastewater collection and treatment.


Phthalic Acids , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Volatile Organic Compounds , Water Pollutants, Chemical , Beijing , China , Environmental Monitoring , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
12.
J Environ Manage ; 278(Pt 1): 111451, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33120092

Vegetation is a key component of green roofs and one of the most important factors affecting the rainfall quantity and quality of green roofs. Four plant species (Sedum lineare Thunb., Sedum spurium 'Coccineum', Sedum aizoon L. and Sedum spectabile) and two planting methods (single-plant and mixed-plant) were tested on extensive green roofs (EGRs) in 2019. Plant growth status (plant height and vegetation coverage), rainfall volume control, nutrient concentration and load reduction were used to analyse the impact of the situation and the different plant growth conditions. The results showed that the growth status of Sedum lineare Thunb., Sedum aizoon L. and Sedum spectabile was great, and the vegetation coverage was more than 95% in summer. Each EGR with different sedum species had strong rainfall retention effects. The average retention rates of Sedum spectabile, Sedum lineare Thunb, mixed plants, Sedum aizoon L. and Sedum spurium 'Coccineum' were 90.98% and 91.38%, 88.51%, 83.42% and 84.17%, respectively. The average total nitrogen (TN) and nitrate nitrogen (NO3--N) concentrations of Sedum lineare Thunb. were 13.77 mg/L and 7.64 mg/L, which were higher than those of other sedum species, and the average concentrations of ammonia nitrogen (NH4+-N) and total phosphorus (TP) of mixed plants were 4.01 mg/L and 0.48 mg/L, which were higher than those of single plants. Different plant species had different effects on nutrient loads. The EGRs of single plants and mixed plants indicated sinks of TN and NH4-N and sources of TP, but the performance of NO3--N was inconsistent. Comprehensively, Sedum lineare Thunb., Sedum aizoon L. and Sedum spectabile were suitable for the green roofs. This study provides scientific support for the green roofs' application of actual projects and has a strong reference value for the development of green infrastructure.


Conservation of Natural Resources , Rain , Nitrogen , Phosphorus , Plants
13.
Sci Total Environ ; 732: 139248, 2020 Aug 25.
Article En | MEDLINE | ID: mdl-32438178

Green roofs can retain urban rainfall runoff, but there are doubts about whether they can reduce urban nonpoint source pollution. To explore the factors affecting the ability of green roofs to reduce nutrients in rainfall runoff, nine types of extensive green roofs (EGRs) were analysed during 38 natural rainfall events and two early spring irrigation runoff events from 1 March to 30 November 2019 in Beijing. Differences among the module scale, growing medium material, growing medium depth, drainage layer material, planting time, rainfall characteristics and seasonal variation were examined to study their correlation with pollutant event mean concentration (EMC) and the load reduction performance of EGRs. The results showed that EGRs had higher total nitrogen (TN), ammonia nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) concentrations than traditional concrete roofs, but total phosphorus (TP) concentrations were similar, and EGRs could reduce some of the nutrient loads. One-way analysis of variance showed that the module scale, growing medium material, growing medium depth, drainage layer material, and planting time had no significant effect on TN and NO3--N concentrations (p > 0.05). The growing medium material had a significant effect on the TP concentration (p < 0.05). From the perspective of nutrient load reduction, module scale had a significant effect on TN and NH4+-N loads (p < 0.05). The growing medium depth had a significant effect on NH4+-N loads (p < 0.05). In addition, the growing medium material had a significant effect on TP loads (p < 0.05). When porous wool fibre and a bumpy plastic drainage board were selected as drainage layer materials, the effect on the NO3--N load differed significantly. In other situations, there were no factors with significant differences. In addition, the rainfall characteristics and seasonal variation influenced the pollutant concentration and EGR runoff load.

14.
Sci Total Environ ; 687: 505-515, 2019 Oct 15.
Article En | MEDLINE | ID: mdl-31212159

Green roof is an important measure in "Sponge Cities" to reduce the runoff and improve the runoff quality. The runoff quantity and quality control capacity of five types of extensive green roofs (EGRs) were analyzed in Beijing for 51 nature rainfall events and 6 simulated events from July 2017 to October 2018. Different module scales (sizes) and substrate depths were examined to study their correlation to runoff retention, peak flow reduction, pollutant event mean concentration (EMC) and load reduction performance of EGRs. In general, both the single-field rainfall events and the long-term monitoring showed that as the module scale and substrate thickness increased, the retention capacity of the EGRs increased. As the module scale increased, the peak flow reduction rate (Pfrr) of the EGR modules increased, while the thickness of the substrate appeared to have less of an effect on Pfrr. When water quality effect was considered, compared with module scale, the substrate thickness had a more obvious effect on the average EMC of different pollutants. As the substrate thickness increased, the EMC of pollutants decreased. Under six simulated design rainfalls, EMC reduction rate of suspended solid (SS) of all types of EGRs ranged from 64.3%-73.1% while no reduction was found in the EMC of chemical oxygen demand (COD). The EMC trends of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), total nitrogen (TN) and total phosphorus (TP) were almost the same, and their EMCs decreased with increasing total rainfall depth. When the pollutant load was considered, the EGRs in this study were a sink of NH4+-N, NO3--N, TN, and TP but a source of COD.

15.
Article En | MEDLINE | ID: mdl-31035357

Combined sewer overflow (CSO) pollution poses a serious threat to the urban water environment and is more severe in old urban areas. This research uses the old urban area in the sponge city pilot area in Tongzhou District, Beijing, as the study area. The United States Environmental Protection Agency (USEPA) storm water management model (SWMM) was used to establish the hydrologic and hydraulic model of this area. The model parameters were calibrated and validated based on the measured rainfall and runoff data. The results show that the Nash-Sutcliffe efficiency coefficient for calibration and validation is more than 0.74. Thirty-two sets of systematic CSO control schemes are formulated, which include the "gray (includes the pipes, pumps, ditches, and detention ponds engineered by people to manage stormwater) strategy" and "gray-green strategies", and the regularity of CSO control for "low impact development (LID) facilities at the source", "intercepting sewer pipes at the midway", and "storage tank at the end", are quantitatively analyzed. The results show that the LID facility has an average annual reduction rate of 22% for the CSO frequency and 35% to 49% for the CSO volume. The retrofitting of intercepting sewer pipes has an average annual reduction rate of 11% for the CSO frequency and 4% to 15% for the CSO volume, and the storage tank has an average annual reduction rate from 3% to 36% for the CSO volume; furthermore, the reduction rate decreases with the increase in the CSO volume reduction rate by LID facilities. When the CSO control target is stricter, the control effect of the "end" segment is more obvious, but the control efficiency is lower. By studying the variability of the storage tank volume under different control targets, it can be concluded that it is reasonable to set the CSO control target because the number of overflow events does not exceed four times per year for the study area.


Sewage , Water Movements , Beijing , Hydrology , Models, Theoretical , Pilot Projects , Rain
16.
Environ Sci Process Impacts ; 20(12): 1697-1707, 2018 Dec 12.
Article En | MEDLINE | ID: mdl-30288511

An understanding of microbial pollution characteristics is needed for stormwater reuse and development of microorganism simulations in urban stormwater. This study investigated the discharge characteristics of faecal indicator bacteria (faecal coliforms) in urban runoff by field sampling both the underlying surfaces and the stormwater pipe outlet. Faecal coliform contamination in urban runoff was found to be frequent, and the highest instantaneous concentration reached 2.42 × 106 MPN/100 ml. Faecal coliforms did not show a consistent first flush effect amongst the different surfaces sampled, and this was exacerbated under rainfall events with high intensity. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) and GAIA (Geometrical Analysis for Interactive Aid) analyses were further applied to explore the ranking of pollutants, the relationship among the pollutants, and the factors affecting the contamination in cases of multiple underlying surfaces, multiple pollutants and rainfall events. For the pollutants of suspended solids (SS), total phosphorus (TP) and chemical oxygen demand (COD), the road sample contamination was significantly higher than on the roof surfaces. No such trend in ranking of faecal coliforms was observed. Rainfall depth and intensity were found to have a significant influence on stormwater contamination by physico-chemical pollutants, while having a somewhat smaller influence on faecal coliform contamination. Faecal coliform contamination is closely associated with the index related to the antecedent dry period. The average temperature and average relative humidity also showed a positive relationship with faecal coliform contamination. The effects of antecedent dry period duration on contamination of physico-chemical pollutants and faecal coliform are completely opposite. Antecedent dry period duration was positively related to the contamination of physico-chemical pollutants, but negatively related to faecal coliform contamination. Therefore, three variables, i.e., antecedent dry period duration, average temperature and average relative humidity, might be used to model the survival/die-off of faecal coliform during the antecedent dry period.


Environmental Monitoring/methods , Rain , Water Movements , Water Pollutants, Chemical/analysis , China , Cities , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/pathogenicity , Enterobacteriaceae Infections/epidemiology , Rain/chemistry , Rain/microbiology , Water Quality
17.
Environ Sci Pollut Res Int ; 23(3): 2693-704, 2016 Feb.
Article En | MEDLINE | ID: mdl-26438368

The deposition of pollutants on impervious surfaces is a serious problem associated with rapid urbanization, which results in non-point-source pollution. Characterizing the build-up and wash-off processes of pollutants in urban catchments is essential for urban planners. In this paper, the spatial variation and particle-size distributions of five heavy metals and two nutrients in surface dust were analyzed, and the runoff water first-flush effect (FF30) and event-mean concentrations (EMCs) of 10 common constituents were characterized. The relationships between runoff variables and stormwater characteristics were examined from three typical urban impervious surfaces in Beijing, China. Dust on road surfaces with smaller grain sizes had higher pollutant concentrations, whereas concentrations of Mn, Zn, Fe, and TP in roof surface dust increased with grain size. Particles with grain sizes of 38-74 and 125-300 µm contributed most to the total pollutant load in roads, while particles with the smallest grain sizes (<38 µm) contributed most on roofs (23.46-41.71 %). Event-mean concentrations (EMCs) and FF30 values for most runoff pollutants tended to be higher on roofs than on roads. The maximum intensity (I max) and the antecedent dry days (ADD) were critical parameters for EMCs in roads, while ADD was the only dominant parameter for EMCs on our studied roof. The rainfall intensity (RI) and maximum intensity (I max) were found to be the parameters with the strongest correlation to the first-flush effect on both roads and roofs. Significant correlations of total suspended solids (TSS) concentration in runoff with grain-size fractions of surface dust indicated that coarser particles (74-300 µm) are most likely to contribute to the solid-phase pollutants, and finer particles (<38 µm) are likely the main source of dissolved pollutants.


Dust , Environmental Pollution , Metals, Heavy , Water Pollutants, Chemical , Beijing , China , Environmental Monitoring/methods , Housing , Particle Size , Rain , Urbanization , Water Movements , Water Pollutants, Chemical/analysis
18.
J Environ Manage ; 113: 467-73, 2012 Dec 30.
Article En | MEDLINE | ID: mdl-23122620

Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading.


Environmental Monitoring/methods , Models, Theoretical , Rain , Water Pollutants, Chemical/analysis , Biological Oxygen Demand Analysis , Phosphorus/analysis
...