Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Brain Behav Immun ; 115: 565-587, 2024 01.
Article En | MEDLINE | ID: mdl-37981012

Obesity is a risk factor for cognitive dysfunction and neurodegenerative disease, including Alzheimer's disease (AD). The gut microbiota-brain axis is altered in obesity and linked to cognitive impairment and neurodegenerative disorders. Here, we targeted obesity-induced cognitive impairment by testing the impact of the probiotic Clostridium butyricum, which has previously shown beneficial effects on gut homeostasis and brain function. Firstly, we characterized and analyzed the gut microbial profiles of participants with obesity and the correlation between gut microbiota and cognitive scores. Then, using an obese mouse model induced by a Western-style diet (high-fat and fiber-deficient diet), the effects of Clostridium butyricum on the microbiota-gut-brain axis and hippocampal cognitive function were evaluated. Finally, fecal microbiota transplantation was performed to assess the functional link between Clostridium butyricum remodeling gut microbiota and hippocampal synaptic protein and cognitive behaviors. Our results showed that participants with obesity had gut microbiota dysbiosis characterized by an increase in phylum Proteobacteria and a decrease in Clostridium butyricum, which were closely associated with cognitive decline. In diet-induced obese mice, oral Clostridium butyricum supplementation significantly alleviated cognitive impairment, attenuated the deficit of hippocampal neurite outgrowth and synaptic ultrastructure, improved hippocampal transcriptome related to synapses and dendrites; a comparison of the effects of Clostridium butyricum in mice against human AD datasets revealed that many of the genes changes in AD were reversed by Clostridium butyricum; concurrently, Clostridium butyricum also prevented gut microbiota dysbiosis, colonic barrier impairment and inflammation, and attenuated endotoxemia. Importantly, fecal microbiota transplantation from donor-obese mice with Clostridium butyricum supplementation facilitated cognitive variables and colonic integrity compared with from donor obese mice, highlighting that Clostridium butyricum's impact on cognitive function is largely due to its ability to remodel gut microbiota. Our findings provide the first insights into the neuroprotective effects of Clostridium butyricum on obesity-associated cognitive impairments and neurodegeneration via the gut microbiota-gut-brain axis.


Clostridium butyricum , Cognitive Dysfunction , Neurodegenerative Diseases , Probiotics , Humans , Animals , Mice , Brain-Gut Axis , Dysbiosis/complications , Mice, Obese , Obesity/complications , Cognitive Dysfunction/etiology , Probiotics/pharmacology
2.
Parasit Vectors ; 16(1): 454, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38093309

BACKGROUND: Toxoplasma gondii (T. gondii) is increasingly considered a risk factor for neurodegenerative diseases. However, there is only limited information on the development of drugs for T. gondii infection. Lentinan from Lentinula edodes is a bioactive ingredient with the potential to enhance anti-infective immunity. The present study aimed to investigate the neuroprotective effect of lentinan on T. gondii-associated cognitive deficits in mice. METHODS: A chronic T. gondii infection mouse model was established by administering 10 cysts of T. gondii by gavage. Lentinan was intraperitoneally administered 2 weeks before infection. Behavioral tests, RNA sequencing, immunofluorescence, transmission electron microscopy and Golgi-Cox staining were performed to assess the effect of lentinan on cognitive deficits and neuropathology in vivo. In vitro, the direct and indirect effects of lentinan on the proliferation of T. gondii tachyzoites were evaluated in the absence and presence of BV-2 cells, respectively. RESULTS: Lentinan prevented T. gondii-induced cognitive deficits and altered the transcriptome profile of genes related to neuroinflammation, microglial activation, synaptic function, neural development and cognitive behavior in the hippocampus of infected mice. Moreover, lentinan reduced the infection-induced accumulation of microglia and downregulated the mRNA expression of proinflammatory cytokines. In addition, the neurite and synaptic ultrastructural damage in the hippocampal CA1 region due to infection was ameliorated by lentinan administration. Lentinan decreased the cyst burden in the brains of infected mice, which was correlated with behavioral performance. In line with this finding, lentinan could significantly inhibit the proliferation of T. gondii tachyzoites in the microglial cell line BV2, although lentinan had no direct inhibitory effect on parasite growth. CONCLUSIONS: Lentinan prevents cognitive deficits via the improvement of neurite impairment and synaptic loss induced by T. gondii infection, which may be associated with decreased cyst burden in the brain. Overall, our findings indicate that lentinan can ameliorate T. gondii-related neurodegenerative diseases.


Neurodegenerative Diseases , Toxoplasma , Toxoplasmosis , Animals , Mice , Lentinan/metabolism , Lentinan/pharmacology , Toxoplasmosis/metabolism , Brain/pathology , Toxoplasma/genetics , Neurodegenerative Diseases/pathology , Cognition
3.
Parasit Vectors ; 16(1): 65, 2023 Feb 13.
Article En | MEDLINE | ID: mdl-36782332

BACKGROUND: Toxoplasma gondii (T. gondii) is a neuroinvasive parasite causing neuroinflammation, which in turn is associated with a higher risk for several psycho-behavioral disorders. There is an urgent need to identify drugs capable of improving cognitive deficits induced by T. gondii infection. ß-Glucan, an active ingredient in mushrooms, could significantly enhance immunity. However, the effects of ß-glucan against neuroinflammation and cognitive decline induced by T. gondii infection remain unknown. The present study aimed to investigate the neuroprotective effect of ß-glucan on goal-directed behavior of mice chronically infected by T. gondii Wh6 strain. METHODS: A mice model of chronic T. gondii Wh6 infection was established by infecting mice by oral gavage with 10 cysts of T. gondii Wh6. Intraperitoneal injection of ß-glucan was manipulated 2 weeks before T. gondii infection. Performance of the infected mice on the Y-maze test and temporal order memory (TOM) test was used to assess the goal-directed behavior. Golgi-Cox staining, transmission electron microscopy, immunofluorescence, real-time PCR and western blot assays were used to detect prefrontal cortex-associated pathological change and neuroinflammation. RESULTS: The administration of ß-glucan significantly prevented T. gondii Wh6-induced goal-directed behavioral impairment as assessed behaviorally by the Y-maze test and TOM test. In the prefrontal cortex, ß-glucan was able to counter T. gondii Wh6-induced degeneration of neurites, impairment of synaptic ultrastructure and decrease of pre- and postsynaptic protein levels. Also, ß-glucan significantly prevented the hyperactivation of pro-inflammatory microglia and astrocytes, as well as the upregulation of proinflammatory cytokines caused by chronic T. gondii Wh6 infection. CONCLUSIONS: This study revealed that ß-glucan prevents goal-directed behavioral impairment induced by chronic T. gondii infection in mice. These findings suggest that ß-glucan may be an effective drug candidate to prevent T. gondii-associated psycho-behavioral disorders including goal-directed behavioral injury.


Toxoplasma , Toxoplasmosis , beta-Glucans , Animals , Mice , Neuroinflammatory Diseases , Goals , Toxoplasmosis/parasitology
4.
Mol Nutr Food Res ; 67(1): e2200597, 2023 01.
Article En | MEDLINE | ID: mdl-36382553

SCOPE: Hepatic steatosis is a major health issue that can be attenuated by a healthy diet. This study investigates the effects and molecular mechanisms of butyrate, a dietary fiber metabolite of gut microbiota, on lipid metabolism in hepatocytes. METHODS AND RESULTS: This study examines the effects of butyrate (0-8 mM) on lipid metabolism in primary hepatocytes. The results show that butyrate (2 mM) consistently inhibits lipogenic genes and activates lipid oxidation-related gene expression in hepatocytes. Furthermore, butyrate modulates lipid metabolism genes, reduces fat droplet accumulation, and activates the calcium/calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 1 (HDAC1)-cyclic adenosine monophosphate response element binding protein (CREB) signaling pathway in the primary hepatocytes and liver of wild-type (WT) mice, but not in G-protein-coupled receptor 41 (GPR41) knockout and 43 (GPR43) knockout mice. This suggests that butyrate regulated hepatic lipid metabolism requires GPR41 and GPR43. Finally, the study finds that dietary butyrate supplementation (5%) ameliorates hepatic steatosis and abnormal lipid metabolism in the liver of mice fed a high-fat and fiber-deficient diet for 15 weeks. CONCLUSION: This work reveals that butyrate improves hepatic lipid metabolism through the GPR41/43-CaMKII/HDAC1-CREB pathway, providing support for consideration of butyrate as a dietary supplement to prevent the progression of NAFLD induced by the Western-style diet.


Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Mice , Butyrates/pharmacology , Butyrates/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/pharmacology , Diet , Diet, High-Fat/adverse effects , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Lipid Metabolism , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism
5.
Front Immunol ; 13: 1084203, 2022.
Article En | MEDLINE | ID: mdl-36713407

Background: The intestinal tract serves as a critical regulator for nutrient absorption and overall health. However, its involvement in anti-parasitic infection and immunity has been largely neglected, especially when a parasite is not transmitted orally. The present study investigated the colonic histopathology and functional reprogramming in mice with intraperitoneal infection of the larval Echinococcus granulosus (E. granulosus). Results: Compared with the control group, the E. granulosus-infected mice exhibited deteriorated secreted mucus, shortened length, decreased expression of tight junction proteins zonula occludens-1 (ZO-1), and occludin in the colon. Moreover, RNA sequencing was employed to characterize colonic gene expression after infection. In total, 3,019 differentially expressed genes (1,346 upregulated and 1,673 downregulated genes) were identified in the colon of infected mice. KEGG pathway and GO enrichment analysis revealed that differentially expressed genes involved in intestinal immune responses, infectious disease-associated pathways, metabolism, or focal adhesion were significantly enriched. Among these, 18 tight junction-relative genes, 44 immune response-associated genes, and 23 metabolic genes were annotated. Furthermore, mebendazole treatment could reverse the colonic histopathology induced by E. granulosus infection. Conclusions: Intraperitoneal infection with E. granulosus induced the pathological changes and functional reprogramming in the colon of mice, and mebendazole administration alleviated above alternations, highlighting the significance of the colon as a protective barrier against parasitic infection. The findings provide a novel perspective on host-parasite interplay and propose intestine as a possible target for treating parasitic diseases that are not transmitted orally.


Coleoptera , Echinococcosis , Echinococcus granulosus , Animals , Mice , Mebendazole , Intestines , Colon/metabolism
6.
J Nanosci Nanotechnol ; 15(4): 2932-8, 2015 Apr.
Article En | MEDLINE | ID: mdl-26353516

The four miniature heat pipes filled with DI water and SiO2-water nanofluids containing different volume concentrations (0.2%, 0.6% and 1.0%) are experimentally measured on the condition of air and water cooling. The wall temperature and the thermal resistance are investigated for three inclination angles. At the same of inlet heat water temperature in the heat system, it is observed that the total wall temperatures on the evaporator section are almost retaining constant by air cooling and the wall temperatures at the front end of the evaporator section are slightly reduced by water cooling. However, the wall temperatures at the condenser section using SiO2-water nanofluids are all higher than that for DI water on the two cooling conditions. As compared with the heat pipe using DI water, the decreasing of the thermal resistance in heat pipe using nanofluids is about 43.10%-74.46% by air cooling and 51.43%-72.22% by water cooling. These indicate that the utilization of SiO2-water nanofluids as working fluids enhances the performance of the miniature heat pipe. When the four miniature heat pipes are cut to examine at the end of the experiment, a thin coating on the surface of the screen mesh of the heat pipe using SiO2-water nanofluids is found. This may be one reason for reinforcing the heat transfer performance of the miniature heat pipe.

...