Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Reprod Biol ; 23(3): 100782, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37320994

RESUMEN

Long non-coding RNA has been shown to mediate the progression of polycystic ovary syndrome (PCOS). However, the role and mechanism of Prader-Willi region nonprotein coding RNA 2 (PWRN2) in PCOS progression remain unclear. In our study, Sprague-Dawley rat was injected with dehydroepiandrosterone to mimic PCOS rat models. HE staining was used to assess the number of benign granular cells, and serum insulin and hormone levels were detected by ELISA kit. The expression of PWRN2 was examined by qRT-PCR. Ovarian granulosa cells (GCs) proliferation and apoptosis were examined by CCK-8 assay and flow cytometry. The protein levels of apoptosis markers and Alpha thalassemia retardation syndrome X-linked (ATRX) were determined by western blot. The interaction between lysine-specific demethylase 1 (LSD1) and PWRN2 or ATRX was confirmed by RIP and ChIP assay. Our data showed that PWRN2 was upregulated and ATRX was downregulated in the ovarium tissues and serum of PCOS rat. PWRN2 knockdown promoted GCs proliferation and inhibited apoptosis. In the mechanism, PWRN2 inhibited ATRX transcription by binding with LSD1. In addition, downregulation of ATRX also eliminated the effect of sh-PWRN2 on GCs growth. In conclusion, our data suggested that PWRN2 might restrain GCs growth to promote PCOS progression, which was achieved by binding with LSD1 to inhibit ATRX transcription.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , ARN Largo no Codificante , Animales , Femenino , Ratas , Apoptosis , Proliferación Celular/fisiología , Células de la Granulosa , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , MicroARNs/genética , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Ratas Sprague-Dawley , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína Nuclear Ligada al Cromosoma X/metabolismo
2.
PLoS One ; 18(4): e0285016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37115798

RESUMEN

Guinea pigs are a valuable animal model for studying various diseases, including reproductive diseases. However, techniques for generating embryos via embryo engineering in guinea pigs are limited; for instance, in vitro maturation (IVM) technique is preliminary for guinea pig oocytes. In this study, we aimed to establish and optimize an IVM method for guinea pig oocytes by investigating various factors, such as superovulation induced by different hormones, culture supplementation (e.g., amino acids, hormone, and inhibitors), culture conditions (e.g., oocyte type, culture medium type, and treatment time), and in vivo hCG stimulation. We found that oocytes collected from guinea pigs with superovulation induced by hMG have a higher IVM rate compared to those collected from natural cycling individuals. Moreover, we found that addition of L-cysteine, cystine, and ROS in the culture medium can increase the IVM rate. In addition, we demonstrated that in vivo stimulation with hCG for 3-8 h can further increase the IVM rate. As a result, the overall IVM rate of guinea pig oocytes under our optimized conditions can reach ~69%, and the mature oocytes have high GSH levels and normal morphology. In summary, we established an effective IVM method for guinea pig oocytes by optimizing various factors and conditions, which provides a basis for embryo engineering using guinea pigs as a model.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Oocitos , Femenino , Cobayas , Animales , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos/metabolismo , Oogénesis , Aminoácidos/metabolismo , Cisteína/farmacología , Cisteína/metabolismo
3.
Front Pharmacol ; 13: 1015926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304167

RESUMEN

Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.

4.
Front Immunol ; 13: 990463, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36131911

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous cells which are abnormally accumulated during the differentiation of myeloid cells. Immunosuppression is the main functional feature of MDSCs, which inhibit T cell activity in the tumor microenvironment (TME) and promote tumoral immune escape. The main principle for immunotherapy is to modulate, restore, and remodel the plasticity and potential of immune system to have an effective anti-tumor response. In the TME, MDSCs are major obstacles to cancer immunotherapy through reducing the anti-tumor efficacy and making tumor cells more resistant to immunotherapy. Therefore, targeting MDSCs treatment becomes the priority of relevant studies and provides new immunotherapeutic strategy for cancer treatment. In this review, we mainly discuss the functions and mechanisms of MDSCs as well as their functional changes in the TME. Further, we review therapeutic effects of immunotherapy against MDSCs and potential breakthroughs regarding immunotherapy targeting MDSCs and immune checkpoint blockade (ICB) immunotherapy.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Escape del Tumor , Microambiente Tumoral
5.
Anim Sci J ; 92(1): e13657, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34796578

RESUMEN

Livestock farming development has become increasingly important in recent years. It not only provides us with meat nutrition and pet feeding but also increases the economic value by providing numerous employment opportunities, which improves our life quality. The livestock farming development depends on successful animal reproduction. As a vital process in animal reproduction, folliculogenesis and its influencing factors as well as their underlying mechanisms need to be understood thoroughly. This review is aimed at summarizing the factors such as cellular processes, gene regulation, noncoding RNAs and other endocrine or paracrine regulatory factors that affect follicular development, and their underlying mechanisms of action in livestock in order to provide novel insights for future studies. The above factors were found as significant determinants influencing the follicular development in livestock through various signaling pathways.


Asunto(s)
Ganado , Agricultura , Animales , Granjas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...