Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol Methods ; 252: 57-64, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29154792

RESUMEN

The classical cell-culture methods, such as cell culture infectious dose 50% (CCID50) assays, are time-consuming, end-point assays currently used during the development of a viral vaccine production process to measure viral infectious titers. However, they are not suitable for handling the large number of tests required for high-throughput and large-scale screening analyses. Impedance-based bio-sensing techniques used in real-time cell analysis (RTCA) to assess cell layer biological status in vitro, provide real-time data. In this proof-of-concept study, we assessed the correlation between the results from CCID50 and RTCA assays and compared time and costs using monovalent and tetravalent chimeric yellow fever dengue (CYD) vaccine strains. For the RTCA assay, Vero cells were infected with the CYD sample and real-time impedance was recorded, using the dimensionless cell index (CI). The CI peaked just after infection and decreased as the viral cytopathic effect occurred in a dose-dependent manner. The time to the median CI (CITmed) was correlated with viral titers determined by CCID50 over a range of about 4-5log10 CCID50/ml. This in-house RTCA virus-titration assay was shown to be a robust method for determining real-time viral infectious titers, and could be an alternative to the classical CCID50 assay during the development of viral vaccine production process.


Asunto(s)
Técnicas Biosensibles , Efecto Citopatogénico Viral , Virus del Dengue/fisiología , Carga Viral/métodos , Animales , Chlorocebus aethiops , Pruebas de Neutralización , Prueba de Estudio Conceptual , Células Vero
2.
J Biol Eng ; 8: 19, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25104972

RESUMEN

BACKGROUND: Metal contamination is widespread and results from natural geogenic and constantly increasing anthropogenic sources (mainly mining and extraction activities, electroplating, battery and steel manufacturing or metal finishing). Consequently, there is a growing need for methods to detoxify polluted ecosystems. Industrial wastewater, surface water and ground water need to be decontaminated to alleviate the contamination of soils and sediments and, ultimately, the human food chain. In nuclear power plants, radioactive metals are produced; these metals need to be removed from effluents before they are released into the environment, not only for pollution prevention but also for waste minimization. Many physicochemical methods have been developed for metal removal from aqueous solutions, including chemical coagulation, adsorption, extraction, ion exchange and membrane separation; however, these methods are generally not metal selective. Bacteria, because they contain metal transporters, provide a potentially competitive alternative to the current use of expensive and high-volume ion-exchange resins. RESULTS: The feasibility of using bacterial biofilters as efficient tools for nickel and cobalt ions specific remediation was investigated. Among the factors susceptible to genetic modification in Escherichia coli, specific efflux and sequestration systems were engineered to improve its metal sequestration abilities. Genomic suppression of the RcnA nickel (Ni) and cobalt (Co) efflux system was combined with the plasmid-controlled expression of a genetically improved version of a specific metallic transporter, NiCoT, which originates from Novosphingobium aromaticivorans. The resulting strain exhibited enhanced nickel (II) and cobalt (II) uptake, with a maximum metal ion accumulation of 6 mg/g bacterial dry weight during 10 min of treatment. A synthetic adherence operon was successfully introduced into the plasmid carrying the improved NiCoT transporter, conferring the ability to form thick biofilm structures, especially when exposed to nickel and cobalt metallic compounds. CONCLUSIONS: This study demonstrates the efficient use of genetic engineering to increase metal sequestration and biofilm formation by E. coli. This method allows Co and Ni contaminants to be sequestered while spatially confining the bacteria to an abiotic support. Biofiltration of nickel (II) and cobalt (II) by immobilized cells is therefore a promising option for treating these contaminants at an industrial scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...