Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Horm Behav ; 164: 105593, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909429

RESUMEN

Autism Spectrum Disorder (ASD) is characterized by differences in social communication and interaction, as well as areas of focused interests and/or repetitive behaviors. Recent studies have highlighted a higher prevalence of endocrine and reproductive disturbances among females on the autism spectrum, hinting at potential disruptions within the hypothalamus-pituitary-ovary (HPO) axis. This research aims to explore the reproductive health disparities in ASD using an animal model of autism, the C58/J inbred mouse strain, with a focus on reproductive performance and hormonal profiles compared to the C57BL/6J control strain. Our findings revealed that the estrous cycle in C58/J females is disrupted, as evidenced by a lower frequency of complete cycles and a lack of cyclical release of estradiol and progesterone compared to control mice. C58/J females also exhibited poor performance in several reproductive parameters, including reproductive lifespan and fertility index. Furthermore, estrogen receptor alpha content showed a marked decrease in the hypothalamus of C58/J mice. These alterations in the estrous cycle, hormonal imbalances, and reduced reproductive function imply dysregulation in the HPO axis. Additionally, our in-silico study identified a group of genes involved in infertility carrying single-nucleotide polymorphisms (SNPs) in the C58/J strain, which also have human orthologs associated with autism. These findings could offer valuable insights into the molecular underpinnings of neuroendocrine axis disruption and reproductive issues observed in ASD.

2.
Sci Rep ; 14(1): 4608, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409172

RESUMEN

Individuals with autism spectrum disorder (ASD) often exhibit atypical hippocampal anatomy and connectivity throughout their lifespan, potentially linked to alterations in the neurogenic process within the hippocampus. In this study, we performed an in-silico analysis to identify single-nucleotide polymorphisms (SNPs) in genes relevant to adult neurogenesis in the C58/J model of idiopathic autism. We found coding non-synonymous (Cn) SNPs in 33 genes involved in the adult neurogenic process, as well as in 142 genes associated with the signature genetic profile of neural stem cells (NSC) and neural progenitors. Based on the potential alterations in adult neurogenesis predicted by the in-silico analysis, we evaluated the number and distribution of newborn neurons in the dentate gyrus (DG) of young adult C58/J mice. We found a reduced number of newborn cells in the whole DG, a higher proportion of early neuroblasts in the subgranular layer (SGZ), and a lower proportion of neuroblasts with morphological maturation signs in the granule cell layer (GCL) of the DG compared to C57BL/6J mice. The observed changes may be associated with a delay in the maturation trajectory of newborn neurons in the C58/J strain, linked to the Cn SNPs in genes involved in adult hippocampal neurogenesis.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Animales , Trastorno Autístico/genética , Ratones Endogámicos C57BL , Neuronas/fisiología , Hipocampo/fisiología , Neurogénesis/genética , Polimorfismo Genético , Giro Dentado/fisiología
3.
Eur J Neurosci ; 59(1): 154-173, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057955

RESUMEN

Autism spectrum disorder (ASD) is a diverse group of neurodevelopmental conditions with complex origins. Individuals with ASD present various neurobiological abnormalities, including an altered immune response in the central nervous system and other tissues. Animal models like the C58/J inbred mouse strain are used to study biological characteristics of ASD. This strain is considered an idiopathic autism model because of its demonstrated reduced social preference and repetitive behaviours. Notably, C58/J mice exhibit alterations in dendritic arbour complexity, density and dendritic spines maturation in the hippocampus and prefrontal cortex (PFC), but inflammatory-related changes have not been explored in these mice. In this study, we investigated proinflammatory markers in the hippocampus and PFC of adult male C58/J mice. We discovered elevated levels of interferon gamma (IFN-γ) and monocyte chemoattractant protein 1 (MCP-1) in the hippocampus, suggesting increased inflammation, alongside a reduction in the anti-inflammatory enzyme arginase 1 (ARG1). Conversely, the PFC displayed reduced levels of TNF-α and MCP-1. Microglial analysis revealed higher levels of transmembrane protein 119 (TMEM119) and increased microglial density in a region-specific manner of the autistic-like mice, particularly in the PFC and hippocampus. Additionally, an augmented expression of the fractalkine receptor CX3CR1 was observed in the hippocampus and PFC of C58/J mice. Microglial morphological analysis shows no evident changes in the hippocampus of mice with autistic-like behaviours versus wild-type strain. These region-specific changes can contribute to modulate processes like inflammation or synaptic pruning in the C58/J mouse model of idiopathic autism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Masculino , Animales , Trastorno Autístico/metabolismo , Trastorno del Espectro Autista/metabolismo , Microglía/metabolismo , Ratones Endogámicos , Corteza Prefrontal/metabolismo , Hipocampo/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
4.
J Neurooncol ; 161(1): 165-174, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36525166

RESUMEN

PURPOSE: Astrocytomas are a type of malignant brain tumor with an unfavorable clinical course. The impact of AGT and MGMT somatic variants in the prognosis of astrocytoma is unknown, and it is controversial for TP53. Moreover, there is a lack of knowledge regarding the molecular characteristics of astrocytomas in Mexican patients. METHODS: We studied 48 Mexican patients, men and women, with astrocytoma (discovery cohort). We performed DNA deep sequencing in tumor samples, targeting AGT, MGMT and TP53, and we studied MGMT gene promoter methylation status. Then we compared our findings to a cohort which included data from patients with astrocytoma from The Cancer Genome Atlas (validation cohort). RESULTS: In the discovery cohort, we found a higher number of somatic variants in AGT and MGMT than in the validation cohort (10.4% vs < 1%, p < 0.001), and, in both cohorts, we observed only women carried variants AGT variants. We also found that the presence of either MGMT variant or promoter methylation was associated to better survival and response to chemotherapy, and, in conjunction with TP53 variants, to progression-free survival. CONCLUSIONS: The occurrence of AGT variants only in women expands our knowledge about the molecular differences in astrocytoma between men and women. The increased prevalence of AGT and MGMT variants in the discovery cohort also points towards possible distinctions in the molecular landscape of astrocytoma among populations. Our findings warrant further study.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Femenino , Humanos , Masculino , Astrocitoma/patología , Biomarcadores , Neoplasias Encefálicas/patología , ADN/uso terapéutico , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Mutación , Pronóstico , Análisis de Secuencia de ADN , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética
5.
Cell Signal ; 92: 110246, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35033667

RESUMEN

Medulloblastoma (MB) is the most common and aggressive pediatric intracranial tumor. Estrogen receptor ß (ERß) expression correlates with MB development and its phosphorylation modifies its transcriptional activity in a ligand-dependent or independent manner. Using in silico tools, we have identified several residues in ERß protein as potential targets of protein kinases C (PKCs) α and δ. Using Daoy cells, we observed that PKCα and PKCδ associate with ERß and induce its phosphorylation. The activation of ERß promotes MB cells proliferation and invasion, and PKCs downregulation dysregulates these steroid receptor mediated processes. Our data suggest that these kinases may play a crucial role in the regulation of the ERß transcriptional activity. Overexpression of both PKCα and PKCδ in MB biopsies samples supports their relevance in MB progression.


Asunto(s)
Neoplasias Cerebelosas , Receptor beta de Estrógeno , Meduloblastoma , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C , Línea Celular Tumoral , Proliferación Celular , Niño , Receptor alfa de Estrógeno , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo
6.
Nutr Neurosci ; 25(2): 387-410, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32338174

RESUMEN

Objective: This work aimed to compile information about the neuronal processes in which polyunsaturated fatty acids (PUFAs) could modulate brain plasticity, in order to analyze the role of nutritional intervention with the ω-3 and ω-6 fatty acids as a therapeutic strategy for the Autism Spectrum Disorder (ASD)-related signs and symptoms.Methods: We reviewed different articles reporting the effect of PUFAS on neurite elongation, membrane expansion, cytoskeleton rearrangement and neurotransmission, considering the ASD-related abnormalities in these processes.Results: In accordance to the reviewed studies, it is clear that ASD is one of the neurological conditions associated with an impairment in neuronal plasticity; therefore, PUFAs-rich diet improvements on cognition and behavioral deficits in individuals with autism, could be involved with the regulation of neuronal processes implicated in the atypical brain plasticity related with this neurodevelopmental disorder.Discussion: The behavioral and cognitive improvement observed in individuals with ASD after PUFAs treatment might underlie, at least in part, in the ability of ω-3 and ω-6 fatty acids to induce neurite outgrowth, probably, through the dynamic regulation of the neuronal cytoskeleton along with the expansion of neuronal membranes. Furthermore, it might also be associated with an enhancement of the efficacy of synaptic transmission and the modulation of neurotransmitters release.


Asunto(s)
Trastorno del Espectro Autista , Ácidos Grasos Omega-3 , Trastorno del Espectro Autista/tratamiento farmacológico , Cognición , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Insaturados , Humanos , Plasticidad Neuronal
7.
Front Cell Neurosci ; 15: 726501, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616277

RESUMEN

Autism spectrum disorder (ASD) has a broad range of neurobiological characteristics, including alterations in dendritic spines, where approximately 90% of excitatory synapses occur. Therefore, changes in their number or morphology would be related to atypical brain communication. The C58/J inbred mouse strain displays low sociability, impaired communication, and stereotyped behavior; hence, it is considered among the animal models suitable for the study of idiopathic autism. Thus, this study aimed to evaluate the dendritic spine differences in the hippocampus and the prefrontal cortex of C58/J mice. We found changes in the number of spines and morphology in a brain region-dependent manner: a subtle decrease in spine density in the prefrontal cortex, higher frequency of immature phenotype spines characterized by filopodia-like length or small morphology, and a lower number of mature phenotype spines with mushroom-like or wide heads in the hippocampus. Moreover, an in silico analysis showed single nucleotide polymorphisms (SNPs) at genes collectively involved in regulating structural plasticity with a likely association with ASD, including MAP1A (Microtubule-Associated Protein 1A), GRM7 (Metabotropic Glutamate Receptor, 7), ANKRD11 (Ankyrin Repeat Domain 11), and SLC6A4 (Solute Carrier Family 6, member 4), which might support the relationship between the C58/J strain genome, an autistic-like behavior, and the observed anomalies in the dendritic spines.

8.
Onco Targets Ther ; 14: 3757-3768, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34168461

RESUMEN

INTRODUCTION: Astrocytomas are the most common and aggressive primary brain tumors, and they are classified according to the degree of malignancy on a scale of I to IV, in which grade I is the least malignant and grade IV the highest. Many factors are related to astrocytomas progression as progesterone receptor (PR), whose transcriptional activity could be regulated by phosphorylation by protein kinase C alpha (PKCα) at the residue Ser400. Our aim was to investigate if PR phosphorylation together with PKCα expression could be used as a prognostic factor for astrocytomas malignancy. METHODS: By immunofluorescence, we detected the content of PKCα, PR and its phosphorylation at Ser400 in 46 biopsies from Mexican patients with different astrocytoma malignancy grades; by bioinformatic tools using TCGA data, we evaluated the expression of PR and PKCα mRNA according to astrocytoma malignancy grades. For all statistical analyses, significance was p<0.05. RESULTS: We detected a positive correlation between the tumor grade and the content of PKCα, PR and its phosphorylation at Ser400, as well as the intracellular colocalization of these proteins. Interestingly, using an in silico assay, we found that the PR and PKCα expression at mRNA level has an inverse ratio with astrocytomas tumor grade. DISCUSSION: These results indicate that PR and its phosphorylation at Ser400 site, as well as PKCα and their colocalization, could be considered as possible malignancy biomarkers for astrocytomas grades I-IV.

9.
Front Endocrinol (Lausanne) ; 12: 640298, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841333

RESUMEN

Glioblastomas are the most common and aggressive primary brain tumors in adults, and patients with glioblastoma have a median survival of 15 months. Some alternative therapies, such as Src family kinase inhibitors, have failed presumably because other signaling pathways compensate for their effects. In the last ten years, it has been proven that sex hormones such as progesterone (P4) can induce growth, migration, and invasion of glioblastoma cells through its intracellular progesterone receptor (PR), which is mostly known for its role as a transcription factor, but it can also induce non-genomic actions. These non-classic actions are, in part, a consequence of its interaction with cSrc, which plays a significant role in the progression of glioblastomas. We studied the relation between PR and cSrc, and its effects in human glioblastoma cells. Our results showed that P4 and R5020 (specific PR agonist) activated cSrc protein since both progestins increased the p-cSrc (Y416)/cSrc ratio in U251 and U87 human glioblastoma derived cell lines. When siRNA against the PR gene was used, the activation of cSrc by P4 was abolished. The co-immunoprecipitation assay showed that cSrc and PR interact in U251 cells. P4 treatment also promoted the increase in the p-Fak (Y397) (Y576/577)/Fak and the decrease in p-Paxillin (Y118)/Paxillin ratio, which are significant components of the focal adhesion complex and essential for migration and invasion processes. A siRNA against cSrc gene blocked the increase in the p-Fak (Y576/Y577)/Fak ratio and the migration induced by P4, but not the decrease in p-Paxillin (Y118)/Paxillin ratio. We analyzed the potential role of cSrc over PR phosphorylation in three databases, and one putative tyrosine residue in the amino acid 87 of PR was found. Our results showed that P4 induces the activation of cSrc protein through its PR. The latter and cSrc could interact in a bidirectional mode for regulating the activity of proteins involved in migration and invasion of glioblastomas.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Proteína Tirosina Quinasa CSK/metabolismo , Glioblastoma/metabolismo , Receptores de Progesterona/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Humanos , Invasividad Neoplásica , Paxillin/metabolismo , Fosforilación , Progesterona/metabolismo , Proteínas Tirosina Quinasas/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Tirosina/química
10.
Cells ; 10(4)2021 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-33916643

RESUMEN

Lysophosphatidic acid (LPA) induces a wide range of cellular processes and its signaling is increased in several cancers including glioblastoma (GBM), a high-grade astrocytoma, which is the most common malignant brain tumor. LPA1 receptor is expressed in GBM cells and its signaling pathways activate protein kinases C (PKCs). A downstream target of PKC, involved in GBM progression, is the intracellular progesterone receptor (PR), which can be phosphorylated by this enzyme, increasing its transcriptional activity. Interestingly, in GBM cells, PKCα isotype translocates to the nucleus after LPA stimulation, resulting in an increase in PR phosphorylation. In this study, we determined that LPA1 receptor activation induces protein-protein interaction between PKCα and PR in human GBM cells; this interaction increased PR phosphorylation in serine400. Moreover, LPA treatment augmented VEGF transcription, a known PR target. This effect was blocked by the PR selective modulator RU486; also, the activation of LPA1/PR signaling promoted migration of GBM cells. Interestingly, using TCGA data base, we found that mRNA expression of LPAR1 increases according to tumor malignancy and correlates with a lower survival in grade III astrocytomas. These results suggest that LPA1/PR pathway regulates GBM progression.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteína Quinasa C-alfa/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Lisofosfolípidos/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Supervivencia , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Cells ; 9(9)2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825553

RESUMEN

The mesenchymal phenotype of glioblastoma multiforme (GBM), the most frequent and malignant brain tumor, is associated with the worst prognosis. The epithelial-mesenchymal transition (EMT) is a cell plasticity mechanism involved in GBM malignancy. In this study, we determined 17ß-estradiol (E2)-induced EMT by changes in cell morphology, expression of EMT markers, and cell migration and invasion assays in human GBM-derived cell lines. E2 (10 nM) modified the shape and size of GBM cells due to a reorganization of actin filaments. We evaluated EMT markers expression by RT-qPCR, Western blot, and immunofluorescence.We found that E2 upregulated the expression of the mesenchymal markers, vimentin, and N-cadherin. Scratch and transwell assays showed that E2 increased migration and invasion of GBM cells. The estrogen receptor-α (ER-α)-selective agonist 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT, 10 nM) affected similarly to E2 in terms of the expression of EMT markers and cell migration, and the treatment with the ER-α antagonist methyl-piperidino-pyrazole (MPP, 1 µM) blocked E2 and PPT effects. ER-ß-selective agonist diarylpropionitrile (DNP, 10 nM) and antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazole[1,5-a]pyrimidin-3-yl]phenol (PHTPP, 1 µM) showed no effects on EMT marker expression. These data suggest that E2 induces EMT activation through ER-α in human GBM-derived cells.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Estradiol/uso terapéutico , Estrógenos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Estradiol/farmacología , Estrógenos/farmacología , Glioblastoma/patología , Humanos
12.
Drug Des Devel Ther ; 14: 1799-1811, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32494122

RESUMEN

INTRODUCTION: Cancer stem cells (CSCs) drive the initiation, maintenance, and therapy response of breast tumors. CD49f is expressed in breast CSCs and functions in the maintenance of stemness. Thus, blockade of CD49f is a potential therapeutic approach for targeting breast CSCs. In the present study, we aimed to repurpose drugs as CD49f antagonists. MATERIALS AND METHODS: We performed consensus molecular docking using a subdomain of CD49f that is critical for heterodimerization and a collection of pharmochemicals clinically tested. Molecular dynamics simulations were employed to further characterize drug-target binding. Using MDA-MB-231 cells, we evaluated the effects of potential CD49f antagonists on 1) cell adhesion to laminin; 2) mammosphere formation; and 3) cell viability. We analyzed the effects of the drug with better CSC-selectivity on the activation of CD49f-downstream signaling by Western blot (WB) and co-immunoprecipitation. Expressions of the stem cell markers CD44 and SOX2 were analyzed by flow cytometry and WB, respectively. Transactivation of SOX2 promoter was evaluated by luciferase reporter assays. Changes in the number of CSCs were assessed by limiting-dilution xenotransplantation. RESULTS: Pranlukast, a drug used to treat asthma, bound to CD49f in silico and inhibited the adhesion of CD49f+ MDA-MB-231 cells to laminin, indicating that it antagonizes CD49f-containing integrins. Molecular dynamics analysis showed that pranlukast binding induces conformational changes in CD49f that affect its interaction with ß1-integrin subunit and constrained the conformational dynamics of the heterodimer. Pranlukast decreased the clonogenicity of breast cancer cells on mammosphere formation assay but had no impact on the viability of bulk tumor cells. Brief exposure of MDA-MB-231 cells to pranlukast altered CD49f-dependent signaling, reducing focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K) activation. Further, pranlukast-treated cells showed decreased CD44 and SOX2 expression, SOX2 promoter transactivation, and in vivo tumorigenicity, supporting that this drug reduces the frequency of CSC. CONCLUSION: Our results support the function of pranlukast as a CD49f antagonist that reduces the CSC population in triple-negative breast cancer cells. The pharmacokinetics and toxicology of this drug have already been established, rendering a potential adjuvant therapy for breast cancer patients.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Cromonas/farmacología , Integrina alfa6/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cromonas/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas
13.
Arch Med Res ; 50(4): 187-196, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31499479

RESUMEN

BACKGROUND: Ovarian steroid hormones are involved in modulating the growth of glioblastomas (the most common, aggressive, and lethal brain tumor) through the interaction with their intracellular receptors. Activation of sex hormone receptors is involved in glioblastomas progression. Tibolone (TIB) is a selective tissue estrogenic activity regulator widely prescribed to treat menopausal symptoms and to prevent bone lost. The effects of TIB on the growth of glioblastoma are unknown. AIM OF THE STUDY: To evaluate the effects of TIB on cell number, migration, and invasion of two derived human glioblastoma cell lines (U251 MG and U87), as well as the role of this steroid in estrogen and progesterone receptors activity and content. METHODS: U251-MG and U87 human glioblastoma cell lines were grown with different doses of TIB. The number of cells was determined and migration and invasion tests were carried out. Protein expression was performed by Western blot. RESULTS: We observed that TIB (10 nM) increased the number of cells by inducing proliferation with no effects on cell migration or invasion. The increase in cell proliferation induced by TIB was blocked by estrogen (ERs) or progesterone receptor (PRs) antagonists, ICI 182, 780 and RU 486, suggesting that these receptors mediate proliferating actions of TIB; TIB also modified the content of ERs and PRs by increasing ER-α, ER-ß, and PR-B, while decreased PR-A. CONCLUSION: Our results suggest that TIB increases cell number and proliferation of human glioblastoma cells through the regulation of ERs and PRs actions and content.


Asunto(s)
Antineoplásicos Hormonales/uso terapéutico , Receptor alfa de Estrógeno/metabolismo , Glioblastoma/tratamiento farmacológico , Norpregnenos/uso terapéutico , Receptores de Progesterona/metabolismo , Antineoplásicos Hormonales/farmacología , Línea Celular Tumoral , Femenino , Glioblastoma/patología , Humanos , Norpregnenos/farmacología
14.
Pharmacol Rep ; 71(3): 535-544, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31026757

RESUMEN

BACKGROUND: Breast cancer is a neoplastic disease with high morbidity and mortality in women worldwide. Breast cancer stem cells (CSCs) have a significant function in tumor growth, recurrence, and therapeutic resistance. Thus, CSCs have been pointed as targets of new therapies for breast cancer. Herein, we aimed to repurpose certain drugs as breast CSC-targeting agents. METHODS: We compared a consensus breast CSC signature with the transcriptomic changes that were induced by over 1300 bioactive compounds using Connectivity Map. The effects of the selected drugs on SOX2 promoter transactivation, SOX2 expression, viability, clonogenicity, and ALDH activity in breast cancer cells were analyzed by luciferase assay, western blot, MTT assay, mammosphere formation assay, and ALDEFLUOR® test, respectively. Gene Set Enrichment Analysis (GSEA) was performed using the gene expression data from mammary tumors of mice that were treated with lovastatin. RESULTS: Five drugs (fasudil, pivmecillinam, ursolic acid, 16,16-dimethylprostaglandin E2, and lovastatin) induced signatures that correlated negatively with the query CSC signature. In vitro, lovastatin inhibited SOX2 promoter transactivation, and reduced the efficiency of mammosphere formation and the percentage of ALDH+ cells. Mevalonate mitigated the effects of lovastatin, suggesting that the targeting of CSCs by lovastatin was mediated by the inhibition of its reported target, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR). By GSEA, lovastatin downregulated genes that are involved in stemness and invasiveness in mammary tumors, corroborating our in vitro findings. CONCLUSION: Lovastatin is a breast CSC-targeting drug. The inhibition of HMGCR might develop new adjuvant therapeutic strategies for breast tumors.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Lovastatina/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Animales , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Sistemas de Liberación de Medicamentos/métodos , Femenino , Humanos , Ratones , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Factores de Transcripción SOXB1/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Transcriptoma/genética
15.
Int J Biochem Cell Biol ; 110: 91-102, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30849522

RESUMEN

Lysophosphatidic acid (LPA) is a ubiquitous lysophospholipid that induces a wide range of cellular processes such as wound healing, differentiation, proliferation, migration, and survival. LPA signaling is increased in a number of cancers. In Glioblastoma (GBM), the most aggressive brain tumor, autotaxin the enzyme that produces LPA and its receptor LPA1 are overexpressed. LPA1 is preferentially couple to Gαq proteins in these tumors that in turn activates PKCs. PKCs are involved in many cellular processes including proliferation and metastasis. In this study, we aimed to determine if a classical PKC (α isozyme), could be activated through LPA1 in GBM cell lines and if this activation impacts on cell number. We found that LPA1 induces PKCα translocation to the nucleus, but not to the cell membrane after LPA treatment and the cell number diminished when LPA1/PKCα signaling was blocked, suggesting a relevant role of LPA1 and PKCα in GBM growth.


Asunto(s)
Núcleo Celular/metabolismo , Glioblastoma/patología , Proteína Quinasa C-alfa/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo
16.
Neurosci Lett ; 703: 149-155, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-30885632

RESUMEN

Autism spectrum disorder (ASD) has been associated to atypical neuronal connectivity in the prefrontal cortex (PFC) and the hippocampus, in part, due to an alteration in neuroplasticity processes such as dendritic remodeling. Moreover, it has been proposed that abnormal cytoskeletal dynamics might be underlying the disrupted formation and morphology of dendrites in the ASD brain. Hence, we performed an analysis of the complexity of dendritic arborization of the pyramidal neurons localized in the layer II/III of the PFC and the CA1 region of the hippocampus in the autistic-like mouse strain C58/J, which has previously demonstrated neuronal cytoskeleton anomalies. We found differences in length, number and branching pattern of dendrites of the pyramidal neurons from both structures of C58/J strain. These data suggest a lower dendritic arborization complexity that could be involved with the characteristic autistic-like behaviors displayed in C58/J mice.


Asunto(s)
Trastorno del Espectro Autista/patología , Dendritas/patología , Hipocampo/patología , Corteza Prefrontal/patología , Células Piramidales/patología , Animales , Ratones Endogámicos
17.
Mol Cell Endocrinol ; 477: 81-89, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29894708

RESUMEN

BACKGROUND AND AIMS: Glioblastoma is the most frequent and aggressive brain tumor due to its high capacity to migrate and invade normal brain tissue. The steroid hormone progesterone (P4) contributes to the progression of glioblastoma by promoting proliferation, migration, and cellular invasion through the activation of its intracellular receptor (PR). However, the use of PR antagonist RU486 partially blocks the effects of P4, suggesting the participation of signaling pathways such as those mediated by membrane receptors to P4 (mPRs). Therefore, this study aimed to investigate the effects of mPRα subtype activation on proliferation, migration, and invasion of human glioblastoma cells. METHODS: We treated human glioblastoma cell lines U87 and U251 with the specific mPRα agonist Org OD 02-0, and evaluated its effects on cell number, proliferation, migration, and invasion. Additionally, we measured the phosphorylation of the kinases Src and Akt in both cell lines upon Org OD 02-0 treatment. RESULTS: Org OD 02-0 (100 nM) augmented the number of U87 and U251 cells by increasing cell proliferation. The treatment with this agonist also increased U87 and U251 cell migration and invasion. Both proliferation and cell invasion decreased when mPRα expression was silenced. Finally, we observed that Org OD 02-0 increased the content of p-Src and p-Akt in both cell lines. CONCLUSION: Our data suggest that P4 produces its effects in human glioblastoma progression not only by PR interaction but also through cell signaling pathways activated by mPRα.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Membrana Celular/metabolismo , Movimiento Celular , Glioblastoma/metabolismo , Glioblastoma/patología , Receptores de Progesterona/metabolismo , Neoplasias Encefálicas/enzimología , Recuento de Células , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glioblastoma/enzimología , Humanos , Invasividad Neoplásica , Fosforilación/efectos de los fármacos , Progesterona/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Progesterona/agonistas , Familia-src Quinasas/metabolismo
18.
Neurosci Lett ; 682: 32-38, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29885454

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopment disorder characterized by deficient social interaction, impaired communication as well as repetitive behaviors. ASD subjects present connectivity and neuroplasticity disturbances associated with morphological alterations in axons, dendrites, and dendritic spines. Given that the neuronal cytoskeleton and astrocytes have an essential role in regulating several mechanisms of neural plasticity, the aim of this work was to study alterations in the content of neuronal cytoskeletal components actin and tubulin and their associated proteins, as well as astrocytic proteins GFAP and TSP-1 in the brain of a C58/J mouse model of ASD. We determined the expression and regulatory phosphorylation state of cytoskeletal components in the prefrontal cortex, hippocampus, and cerebellum of C58/J mice by means of Western blotting. Our results show that autistic-like mice present: 1) region-dependent altered expression and phosphorylation patterns of Tau isoforms, associated with anomalous microtubule depolymerization; 2) reduced MAP2 A content in prefrontal cortex; 3) region-dependent changes in cofilin expression and phosphorylation, associated with abnormal actin filament depolymerizing dynamics; 4) diminished synaptopodin levels in the hippocampus; and 5) reduced content of the astrocyte-secreted protein TSP-1 in the prefrontal cortex and hippocampus. Our work demonstrates changes in the expression and phosphorylation of cytoskeletal proteins as well as in TSP-1 in the brain of the autistic-like mice C58/J, shedding light in one of the possible molecular mechanisms underpinning neuroplasticity alterations in the ASD brain and laying the foundation for future investigations in this topic.


Asunto(s)
Astrocitos/metabolismo , Trastorno Autístico/metabolismo , Encéfalo/metabolismo , Proteínas del Citoesqueleto/metabolismo , Neuronas/metabolismo , Trombospondina 1/metabolismo , Animales , Trastorno Autístico/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trombospondina 1/genética
19.
J Steroid Biochem Mol Biol ; 178: 213-220, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29277708

RESUMEN

Parturient rats show a postpartum estrus, a period of sexual receptivity that occurs from 6 to 15 h after the birth of a litter, which allows the mother to gestate a second litter while simultaneously nursing the first one (lactating and pregnant). The present study investigated hormone levels and the expression pattern of estrogen receptor α, and ß, progesterone receptor isoforms and SRC1 in the hypothalamus and the preoptic area of lactating as well as in lactating-pregnant rats. In the latter, estradiol levels were 3-fold higher than those observed in lactating rats on day 14, meanwhile progesterone levels did not change in any condition. There were higher levels of prolactin in both lactating and lactating-pregnant rats on day 7 and decreased on the following days. In the hypothalamus of the lactating rat, the content of ERα increased during lactation meanwhile that of ERß decreased 50% on day 10. The content of both estrogen receptor subtypes in the hypothalamus increased 3-fold on day 21 in lactating-pregnant rats. In the preoptic area, the content of ERα was higher in lactating-pregnant rats on days 14 and 21 while the content of progesterone receptor isoforms was lower as compared with those found in lactating animals on days 7 and 10. The content of SRC1 increased 2-fold in the preoptic area only in lactating rats at day 14 and 21. These findings suggest that lactating- pregnant animals should exhibit differential neuroendocrine and molecular characteristics as compared to lactating animals.


Asunto(s)
Hormonas Esteroides Gonadales/metabolismo , Lactancia , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Animales , Femenino , Embarazo , Ratas , Ratas Sprague-Dawley
20.
Biomed Res Int ; 2017: 7403747, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29259986

RESUMEN

Glioblastoma multiforme (GBM) is the most hostile type of brain cancer. Its aggressiveness is due to increased invasion, migration, proliferation, angiogenesis, and a decreased apoptosis. In this review, we discuss the role of key regulators of apoptosis in GBM and glioblastoma stem cells. Given their importance in the etiology and pathogenesis of GBM, these signaling molecules may represent potential therapeutic targets.


Asunto(s)
Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular/genética , Glioblastoma/genética , Glioblastoma/patología , Humanos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA