Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 200
3.
JMIR Public Health Surveill ; 10: e46019, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38194261

BACKGROUND: Physical exercise is one of the main nonpharmacological treatments for most pathologies. In addition, physical exercise is beneficial in the prevention of various diseases. The impact of physical exercise has been widely studied; however, existing meta-analyses have included diverse and heterogeneous samples. Therefore, to our knowledge, this is the first meta-analysis to evaluate the impact of different physical exercise modalities on telomere length in healthy populations. OBJECTIVE: In this review, we aimed to determine the effect of physical exercise on telomere length in a healthy population through a meta-analysis of randomized controlled trials. METHODS: A systematic review with meta-analysis and meta-regression of the published literature on the impact of physical exercise on telomere length in a healthy population was performed. PubMed, Cochrane Library, SCOPUS, Web of Science, and Embase databases were searched for eligible studies. Methodological quality was evaluated using the Risk Of Bias In Nonrandomized Studies of Interventions and the risk-of-bias tool for randomized trials. Finally, the certainty of our findings (closeness of the estimated effect to the true effect) was evaluated using Grading of Recommendations, Assessment, Development, and Evaluations (GRADE). RESULTS: We included 9 trials that met the inclusion criteria with fair methodological quality. Random-effects model analysis was used to quantify the difference in telomere length between the exercise and sham groups. Meta-analysis showed that exercise did not significantly increase telomere length compared with the control intervention (mean difference=0.0058, 95% CI -0.05 to 0.06; P=.83). Subgroup analysis suggested that high-intensity interventional exercise significantly increased telomere length compared with the control intervention in healthy individuals (mean difference=0.15, 95% CI 0.03-0.26; P=.01). Furthermore, 56% of the studies had a high risk of bias. Certainty was graded from low to very low for most of the outcomes. CONCLUSIONS: The findings of this systematic review and meta-analysis suggest that high-intensity interval training seems to have a positive effect on telomere length compared with other types of exercise such as resistance training or aerobic exercise in a healthy population. TRIAL REGISTRATION: PROSPERO CRD42022364518; http://tinyurl.com/4fwb85ff.


Exercise , Health Status , Telomere Homeostasis , Telomere , Adult , Humans , Databases, Factual
4.
Antioxidants (Basel) ; 12(9)2023 Sep 01.
Article En | MEDLINE | ID: mdl-37760011

Excessive alcohol consumption impairs the immune system, induces oxidative stress, and triggers the activation of peripheral blood (PB) monocytes, thereby contributing to alcoholic liver disease (ALD). We analyzed the M1/M2 phenotypes of circulating classical monocytes and macrophage-derived monocytes (MDMs) in excessive alcohol drinkers (EADs). PB samples from 20 EADs and 22 healthy controls were collected for isolation of CD14+ monocytes and short-term culture with LPS/IFNγ, IL4/IL13, or without stimulation. These conditions were also used to polarize MDMs into M1, M2, or M0 phenotypes. Cytokine production was assessed in the blood and culture supernatants. M1/M2-related markers were analyzed using mRNA expression and surface marker detection. Additionally, the miRNA profile of CD14+ monocytes was analyzed. PB samples from EADs exhibited increased levels of pro-inflammatory cytokines. Following short-term culture, unstimulated blood samples from EADs showed higher levels of soluble TNF-α and IL-8, whereas monocytes expressed increased levels of surface TNF-α and elevated mRNA expression of pro-inflammatory cytokines and inducible nitric oxide synthase. MDMs from EADs showed higher levels of TNF-α and CD206 surface markers and increased IL-10 production. LPS/IFNγ induced higher mRNA expression of Nrf2 only in the controls. miRNA analysis revealed a distinctive miRNA profile that is potentially associated with liver carcinogenesis and ALD through inflammation and oxidative stress. This study confirms the predominantly pro-inflammatory profile of PB monocytes among EADs and suggests immune exhaustion features in MDMs.

5.
Children (Basel) ; 10(9)2023 Sep 04.
Article En | MEDLINE | ID: mdl-37761466

We present the clinical course of a 9-year-old female patient with Bloch-Sulzberger syndrome and severe neurological deficit that met the major (classic cutaneous signs) and minor (dental anomalies and retinal pathology) diagnostic criteria of Landy and Donnai. Longitudinal multidisciplinary follow-up was carried out from birth to adulthood. Neurological involvement was assessed with electroencephalographic (EEG) and neuroimaging tests at different times during the patient's life. Cranio-maxillofacial involvement was evaluated using lateral skeletal facial and cephalometric analyses. The right and left facial widths were measured through frontal face analysis and using the vertical zygomatic-midline distance. Oral rehabilitation was performed through orthodontic treatment and major dental reconstruction using composite resins. This treatment aimed to improve the occlusion and masticatory function, relieve the transversal compression of the maxilla, and reconstruct the fractured teeth. We believe that, due to significant neurological and cognitive impairment, orthognathic surgery was not the best option for restoring function and improving oral health-related quality of life.

6.
Sci Rep ; 13(1): 13441, 2023 08 18.
Article En | MEDLINE | ID: mdl-37596325

There is increasing evidence for the involvement of blood-brain barrier (BBB) in vascular dementia (VaD) and Alzheimer´s disease (AD) pathogenesis. However, the role of endothelial function-related genes in these disorders remains unclear. We evaluated the association of four single-nucleotide polymorphisms (VEGF, VEGFR2 and NOS3) with diagnosis and rate of cognitive decline in AD and VaD in a Spanish case-control cohort (150 VaD, 147 AD and 150 controls). Participants carrying -604AA genotype in VEGFR2 (rs2071559) were less susceptible to VaD after multiple testing. Further analysis for VaD subtype revealed a significant difference between small-vessel VaD patients and controls, but not for large-vessel VaD patients. In addition, -2578A and -460C alleles in VEGF (rs699947 and rs833061) showed to decrease the risk of AD, whereas NOS3 (rs1799983) influenced disease progression. Our study supports previous findings of a deleterious effect of VEGFR2 reduced expression on small-vessel disease, but not on large-vessel disease; as well as a detrimental effect of down-regulating VEGF and eNOS in AD, affecting vascular permeability and neuronal survival. These data highlight the relevance of endothelial function and, therefore, BBB in both VaD and AD.


Alzheimer Disease , Dementia, Vascular , Humans , Alzheimer Disease/genetics , Dementia, Vascular/genetics , Vascular Endothelial Growth Factor A/genetics , Polymorphism, Single Nucleotide , Alleles
7.
Acta Neurochir (Wien) ; 165(5): 1261-1267, 2023 05.
Article En | MEDLINE | ID: mdl-36932233

PURPOSE: The intracranial aneurysm (IA) rupture is associated with a subarachnoid hemorrhage. One third of patients die, and one third remain depend for daily activities. Genetic factors are crucial in the formation and clinical evolution of IAs. Multiple loci have been associated with AIs, much of them implicating multiple pathways related to vascular endothelial maintenance and extracellular matrix integrity. Thus, the aim of our study was to characterize whether polymorphisms in genes implicated in the vascular endothelial maintenance could modify the risk of developing IAs. SUBJECTS AND METHODS: We have studied 176 patients with IA recruited in the Service of Neurosurgery at the University Hospital of Valladolid (Spain) and a control group if 150 sex-matched healthy subjects. Clinical variables were collected from each patient. We have analyzed VEGFA rs833061, VEGFR2 rs2071559, endothelin rs5370, endoglin rs3739817, and eNOS rs1799983 polymorphisms. RESULTS: Our results showed that allele T of the eNOS rs1799983 polymorphism is correlated with decreased risk of developing the disease; thus, allele G of the eNOS rs1799983 polymorphism increased the risk of developing IA. CONCLUSION: The association of eNOS rs1799983 polymorphism with the risk to suffer IA reinforces the hypothesis that genetic variants in eNOS gene could be crucial in the pathogenesis of IA.


Aneurysm, Ruptured , Intracranial Aneurysm , Subarachnoid Hemorrhage , Humans , Intracranial Aneurysm/genetics , Intracranial Aneurysm/complications , Nitric Oxide Synthase Type III/genetics , Polymorphism, Genetic , Subarachnoid Hemorrhage/complications , Aneurysm, Ruptured/genetics , Aneurysm, Ruptured/complications , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease/genetics , Case-Control Studies
8.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article En | MEDLINE | ID: mdl-36834938

Early-onset colorectal cancer (EOCRC; age younger than 50 years) incidence has been steadily increasing in recent decades worldwide. The need for new biomarkers for EOCRC prevention strategies is undeniable. In this study, we aimed to explore whether an aging factor, such as telomere length (TL), could be a useful tool in EOCRC screening. The absolute leukocyte TL from 87 microsatellite stable EOCRC patients and 109 healthy controls (HC) with the same range of age, was quantified by Real Time Quantitative PCR (RT-qPCR). Then, leukocyte whole-exome sequencing (WES) was performed to study the status of the genes involved in TL maintenance (hTERT, TERC, DKC1, TERF1, TERF2, TERF2IP, TINF2, ACD, and POT1) in 70 sporadic EOCRC cases from the original cohort. We observed that TL was significantly shorter in EOCRC patients than in healthy individuals (EOCRC mean: 122 kb vs. HC mean: 296 kb; p < 0.001), suggesting that telomeric shortening could be associated with EOCRC susceptibility. In addition, we found a significant association between several SNPs of hTERT (rs79662648), POT1 (rs76436625, rs10263573, rs3815221, rs7794637, rs7784168, rs4383910, and rs7782354), TERF2 (rs251796 and rs344152214), and TERF2IP (rs7205764) genes and the risk of developing EOCRC. We consider that the measurement of germline TL and the status analysis of telomere maintenance related genes polymorphisms at early ages could be non-invasive methods that could facilitate the early identification of individuals at risk of developing EOCRC.


Colorectal Neoplasms , Early Detection of Cancer , Telomere , Humans , Middle Aged , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Incidence , Telomere/genetics , Telomere/metabolism , Biomarkers, Tumor , Early Detection of Cancer/methods
9.
Nat Rev Dis Primers ; 9(1): 2, 2023 01 19.
Article En | MEDLINE | ID: mdl-36658199

The ichthyoses are a large, heterogeneous group of skin cornification disorders. They can be inherited or acquired, and result in defective keratinocyte differentiation and abnormal epidermal barrier formation. The resultant skin barrier dysfunction leads to increased transepidermal water loss and inflammation. Disordered cornification is clinically characterized by skin scaling with various degrees of thickening, desquamation (peeling) and erythema (redness). Regardless of the type of ichthyosis, many patients suffer from itching, recurrent infections, sweating impairment (hypohidrosis) with heat intolerance, and diverse ocular, hearing and nutritional complications that should be monitored periodically. The characteristic clinical features are considered to be a homeostatic attempt to repair the skin barrier, but heterogeneous clinical presentation and imperfect phenotype-genotype correlation hinder diagnosis. An accurate molecular diagnosis is, however, crucial for predicting prognosis and providing appropriate genetic counselling. Most ichthyoses severely affect patient quality of life and, in severe forms, may cause considerable disability and even death. So far, treatment provides only symptomatic relief. It is lifelong, expensive, time-consuming, and often provides disappointing results. A better understanding of the molecular mechanisms that underlie these conditions is essential for designing pathogenesis-driven and patient-tailored innovative therapeutic solutions.


Ichthyosis , Quality of Life , Humans , Ichthyosis/diagnosis , Ichthyosis/genetics , Eye , Genetic Association Studies
10.
Cancers (Basel) ; 15(2)2023 Jan 10.
Article En | MEDLINE | ID: mdl-36672401

The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.

11.
Endocrine ; 80(1): 47-53, 2023 04.
Article En | MEDLINE | ID: mdl-36547798

Thyroglobulin (TG), the predominant glycoprotein of the thyroid gland, functions as matrix protein in thyroid hormonegenesis. TG deficiency results in thyroid dyshormonogenesis. These variants produce a heterogeneous spectrum of congenital goitre, with an autosomal recessive mode of inheritance. The purpose of this study was to identify and functionally characterize new variants in the TG gene in order to increase the understanding of the molecular mechanisms responsible for thyroid dyshormonogenesis. A total of four patients from two non-consanguineous families with marked alteration of TG synthesis were studied. The two families were previously analysed in our laboratory, only one deleterious allele, in each one, was detected after sequencing the TG gene (c.2359 C > T [p.Arg787*], c.5560 G > T [p.Glu1854*]). These findings were confirmed in the present studies by Next-Generation Sequencing. The single nucleotide coding variants of the TG gene were then analyzed to predict the possible variant causing the disease. The p.Pro2232Leu (c.6695 C > T), identified in both families, showing a low frequency population in gnomAD v2.1.1 database and protein homology, amino acid prediction, and 3D modeling analysis predict a potential pathogenic effect of this variant. We also transiently express p.Pro2232Leu in a full-length rat TG cDNA clone and confirmed that this point variant was sufficient to cause intracellular retention of mutant TG in HEK293T cells. Consequently, each family carried a compound heterozygous for p.Arg787*/p.Pro2232Leu or p.Glu1854*/p.Pro2232Leu variants. In conclusion, our results confirm the pathophysiological importance of altered TG folding as a consequence of missense variants located in the ChEL domain of TG.


Congenital Hypothyroidism , Goiter , Animals , Humans , Rats , Congenital Hypothyroidism/genetics , HEK293 Cells , Thyroglobulin/genetics , Thyroglobulin/metabolism , Protein Transport/genetics
12.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36361809

Ovarian cancer (OC) is one of the most common gynecologic neoplasia and has the highest mortality rate, which is mainly due to late-stage diagnosis and chemotherapy resistance. There is an urgent need to explore new and better therapeutic strategies. We have previously described a family of Microtubule Destabilizing Sulfonamides (MDS) that does not trigger multidrug-mediated resistance in OC cell lines. MDS bind to the colchicine site of tubulin, disrupting the microtubule network and causing antiproliferative and cytotoxic effects. In this work, a novel microtubule-destabilizing agent (PILA9) was synthetized and characterized. This compound also inhibited OC cell proliferation and induced G2/M cell cycle arrest and apoptosis. Interestingly, PILA9 was significantly more cytotoxic than MDS. Here, we also analyzed the effect of these microtubule-destabilizing agents (MDA) in combination with Panobinostat, a pan-histone deacetylase inhibitor. We found that Panobinostat synergistically enhanced MDA-cytotoxicity. Mechanistically, we observed that Panobinostat and MDA induced α-tubulin acetylation and that the combination of both agents enhanced this effect, which could be related to the observed synergy. Altogether, our results suggest that MDA/Panobinostat combinations could represent new therapeutic strategies against OC.


Antineoplastic Agents , Ovarian Neoplasms , Female , Humans , Panobinostat/pharmacology , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Apoptosis , Cell Proliferation , Microtubules , Sulfonamides/pharmacology , Ovarian Neoplasms/drug therapy , Cell Line, Tumor
13.
Br J Surg ; 109(12): 1319-1325, 2022 11 22.
Article En | MEDLINE | ID: mdl-36108087

BACKGROUND: Individuals with a non-syndromic family history of colorectal cancer are known to have an increased risk. There is an opportunity to prevent early-onset colorectal cancer (age less than 50 years) (EOCRC) in this population. The aim was to explore the proportion of EOCRC that is preventable due to family history of colorectal cancer. METHODS: This was a retrospective multicentre European study of patients with non-hereditary EOCRC. The impact of the European Society of Gastrointestinal Endoscopy (ESGE), U.S. Multi-Society Task Force (USMSTF), and National Comprehensive Cancer Network (NCCN) guidelines on prevention and early diagnosis was compared. Colorectal cancer was defined as potentially preventable if surveillance colonoscopy would have been performed at least 5 years before the age of diagnosis of colorectal cancer, and diagnosed early if colonoscopy was undertaken between 1 and 4 years before the diagnosis. RESULTS: Some 903 patients with EOCRC were included. Criteria for familial colorectal cancer risk in ESGE, USMSTF, and NCCN guidelines were met in 6.3, 9.4, and 30.4 per cent of patients respectively. Based on ESGE, USMSTF, and NCCN guidelines, colorectal cancer could potentially have been prevented in 41, 55, and 30.3 per cent of patients, and diagnosed earlier in 11, 14, and 21.1 per cent respectively. In ESGE guidelines, if surveillance had started 10 years before the youngest relative, there would be a significant increase in prevention (41 versus 55 per cent; P = 0.010). CONCLUSION: ESGE, USMSTF, and NCCN criteria for familial colorectal cancer were met in 6.3, 9.4, and 30.4 per cent of patients with EOCRC respectively. In these patients, early detection and/or prevention could be achieved in 52, 70, and 51.4 per cent respectively. Early and accurate identification of familial colorectal cancer risk and increase in the uptake of early colonoscopy are key to decreasing familial EOCRC.


Colorectal Neoplasms , Humans , Middle Aged , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Colonoscopy , Endoscopy, Gastrointestinal
14.
Cancers (Basel) ; 14(16)2022 Aug 20.
Article En | MEDLINE | ID: mdl-36011023

The incidence of early-onset colorectal cancer (EOCRC; age younger than 50 years) has been progressively increasing over the last decades globally, with causes unexplained. A distinct molecular feature of EOCRC is that compared with cases of late-onset colorectal cancer, in EOCRC cases, there is a higher incidence of Nodal Modulator 1 (NOMO1) somatic deletions. However, the mechanisms of NOMO1 in early-onset colorectal carcinogenesis are currently unknown. In this study, we show that in 30% of EOCRCs with heterozygous deletion of NOMO1, there were pathogenic mutations in this gene, suggesting that NOMO1 can be inactivated by deletion or mutation in EOCRC. To study the role of NOMO1 in EOCRC, CRISPR/cas9 technology was employed to generate NOMO1 knockout HCT-116 (EOCRC) and HS-5 (bone marrow) cell lines. NOMO1 loss in these cell lines did not perturb Nodal pathway signaling nor cell proliferation. Expression microarrays, RNA sequencing, and protein expression analysis by LC-IMS/MS showed that NOMO1 inactivation deregulates other signaling pathways independent of the Nodal pathway, such as epithelial-mesenchymal transition and cell migration. Significantly, NOMO1 loss increased the migration capacity of CRC cells. Additionally, a gut-specific conditional NOMO1 KO mouse model revealed no subsequent tumor development in mice. Overall, these findings suggest that NOMO1 could play a secondary role in early-onset colorectal carcinogenesis because its loss increases the migration capacity of CRC cells. Therefore, further study is warranted to explore other signalling pathways deregulated by NOMO1 loss that may play a significant role in the pathogenesis of the disease.

15.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article En | MEDLINE | ID: mdl-35886866

Ovarian cancer (OC) is the most lethal gynecological malignancy; therefore, more effective treatments are urgently needed. We recently reported that chloroquine (CQ) increased reactive oxygen species (ROS) in OC cell lines (OCCLs), causing DNA double-strand breaks (DSBs). Here, we analyzed whether these lesions are repaired by nonhomologous end joining (NHEJ), one of the main pathways involved in DSB repair, and if the combination of CQ with NHEJ inhibitors (NHEJi) could be effective against OC. We found that NHEJ inhibition increased the persistence of γH2AX foci after CQ-induced DNA damage, revealing an essential role of this pathway in the repair of the lesions. NHEJi decreased the proliferation of OCCLs and a strong in vitro synergistic effect on apoptosis induction was observed when combined with CQ. This effect was largely abolished by the antioxidant N-Acetyl-L-cysteine, revealing the critical role of ROS and DSB generation in CQ/NHEJi-induced lethality. We also found that the NHEJ efficiency in OCCLs was not affected by treatment with Panobinostat, a pan-histone deacetylase inhibitor that also synergizes with CQ in OCCLs by impairing homologous recombination. Accordingly, the triple combination of CQ-NHEJi-Panobinostat exerted a stronger in vitro synergistic effect. Altogether, our data suggest that the combination of these drugs could represent new therapeutic strategies against OC.


Chloroquine , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Chloroquine/pharmacology , DNA Breaks, Double-Stranded , DNA Damage , DNA End-Joining Repair , DNA Repair , Female , Humans , Ovarian Neoplasms/drug therapy , Panobinostat , Reactive Oxygen Species
16.
Mech Ageing Dev ; 206: 111693, 2022 09.
Article En | MEDLINE | ID: mdl-35760210

Telomere shortening is usually considered a biomarker of ageing. Harmful alcohol use promotes accelerated biological ageing and alcohol use disorders (AUDs) are associated with short telomere length (TL). This study was conducted to examine the relationship of TL to AUD and determine whether single nucleotide polymorphisms (SNPs) in TERC and TERT modulate this association. For this purpose, we genotyped TERC SNPs rs2293607, rs12696304, and rs16847897 and TERT SNPs rs2735940, rs2736100, and rs2736098 in 308 male patients with AUD and 255 sex-matched healthy controls and measured TL in a subset of 99 patients and 99 controls paired by age and smoking status. Our results showed that the mean TL was shorter in patients with AUD than in controls. The area under the ROC curve was 0.70 (P < 0.001). The GG genotype of TERC rs2293607 was more common among patients with AUD than among controls (9.8% vs. 5.1%; P = 0.038). No difference was found for the other SNPs. Carriers of the GG genotype of rs2293607 had shorter telomeres than did allele A carriers. In conclusion, patients with AUD had shorter telomeres. Genetic susceptibility to telomere shortening through the rs2293607 SNP is associated with a greater risk of AUD.


Alcoholism , Telomerase/genetics , Alcoholism/genetics , Genetic Predisposition to Disease , Humans , Male , Polymorphism, Single Nucleotide , RNA/genetics , Telomere/genetics , Telomere Shortening
17.
Endocrine ; 77(1): 86-101, 2022 06.
Article En | MEDLINE | ID: mdl-35507000

PURPOSE: Primary congenital hypothyroidism (CH) is the most common endocrine disease in children and one of the preventable causes of both cognitive and motor deficits. We present a genetic and bioinformatics investigation of rational clinical design in 17 Argentine patients suspected of CH due to thyroid dyshormonogenesis (TDH). METHODS: Next-Generation Sequencing approach was used to identify variants in Thyroid Peroxidase (TPO) and Dual Oxidase 2 (DUOX2) genes. A custom panel targeting 7 genes associated with TDH [(TPO), Iodothyrosine Deiodinase I (IYD), Solute Carrier Family 26 Member 4 (SLC26A4), Thyroglobulin (TG), DUOX2, Dual Oxidase Maturation Factor 2 (DUOXA2), Solute Carrier Family 5 Member 5 (SLC5A5)] and 4 associated with thyroid dysembryogenesis [PAX8, FOXE1, NKX2-1, Thyroid Stimulating Hormone Receptor (TSHR)] has been designed. Additionally, bioinformatic analysis and structural modeling were carried out to predict the disease-causing potential variants. RESULTS: Four novel variants have been identified, two in TPO: c.2749-2 A > C and c.2752_2753delAG, [p.Ser918Cysfs*62] and two variants in DUOX2 gene: c.425 C > G [p.Pro142Arg] and c.2695delC [p.Gln899Serfs*21]. Eighteen identified TPO, DUOX2 and IYD variants were previously described. We identified potentially pahogenic biallelic variants in TPO and DUOX2 in 7 and 2 patients, respectively. We also detected a potentially pathogenic monoallelic variant in TPO and DUOX2 in 7 and 1 patients respectively. CONCLUSIONS: 22 variants have been identified associated with TDH. All described novel mutations occur in domains important for protein structure and function, predicting the TDH phenotype.


Autoantigens , Congenital Hypothyroidism , Dual Oxidases , Iodide Peroxidase , Iron-Binding Proteins , Argentina , Autoantigens/genetics , Child , Congenital Hypothyroidism/genetics , Dual Oxidases/genetics , Humans , Iodide Peroxidase/genetics , Iron-Binding Proteins/genetics , Mutation , Receptors, Thyrotropin/genetics
18.
Invest Ophthalmol Vis Sci ; 63(4): 27, 2022 04 01.
Article En | MEDLINE | ID: mdl-35486068

Purpose: Degenerative mechanisms of retinal neurodegenerative diseases (RND) share common cellular and molecular signalization pathways. Curative treatment does not exist and cell-based therapy, through the paracrine properties of mesenchymal stem cells (MSC), is a potential unspecific treatment for RND. This study aimed to evaluate the neuroprotective capability of human bone marrow (bm) MSC secretome and its potential to modulate retinal responses to neurodegeneration. Methods: An in vitro model of spontaneous retinal neurodegeneration was used to compare three days of monocultured neuroretina (NR), NR cocultured with bmMSC, and NR cultured with bmMSC secretome. We evaluated retinal morphology markers (Lectin peanut agglutinin, rhodopsin, protein kinase C α isoform, neuronal-specific nuclear protein, glial fibrillary acidic protein, TdT-mediated dUTP nick-end labeling, and vimentin) and proteins involved in apoptosis (apoptosis-inductor factor, caspase-3), necroptosis (MLKL), and autophagy (p62). Besides, we analyzed the relative mRNA expression through qPCR of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, CASP9), necroptosis (MLKL, RIPK1, RIPK3), autophagy (ATG7, BCLIN1, LC3B, mTOR, SQSTM1), oxidative stress (COX2, CYBA, CYBB, GPX6, SOD1, TXN2, TXNRD1) and inflammation (IL1, IL6, IL10, TGFb1, TNFa). Results: The bmMSC secretome preserves retinal morphology, limits pro-apoptotic- and pro-necroptotic-related gene and protein expression, modulates autophagy-related genes and proteins, and stimulates the activation of antioxidant-associated genes. Conclusions: The neuroprotective ability of the bmMSC secretome is associated with activation of antioxidant machinery, modulation of autophagy, and inhibition of apoptosis and necroptosis during retinal degeneration. The neuroprotective effect of bmMSC secretomes in the presence/absence of MSC looks similar. Our current results reinforce the hypothesis that the human bmMSC secretome slows retinal neurodegeneration and may be a therapeutic option for treating RND.


Mesenchymal Stem Cells , Neuroprotective Agents , Antioxidants/pharmacology , Apoptosis , Autophagy , Humans , Neuroprotective Agents/pharmacology , Oxidative Stress , Secretome
19.
J Clin Med ; 11(6)2022 Mar 21.
Article En | MEDLINE | ID: mdl-35330058

During the normal aging process, a series of events occur, such as a decrease in telomere length and a decrease in various cognitive functions, such as attention, memory, or perceptual-motor speed. Several studies have attempted to establish a correlation between both variables; however, there is considerable controversy in the scientific literature. The aim of our study was to establish a correlation between the scores obtained in the following different cognitive tests: the Mini-Mental State Examination, the Benton Visual Retention Test, the Trail Making Test, the Rey Auditory Verbal Learning Test, the Stroop Test, and the measurement of telomere length. The sample consisted of a total of 41 physically active, healthy women, with a mean age of 71.21 (±4.32) and of 33 physically inactive, healthy women, with a mean age of 72.70 (±4.13). Our results indicate that there is no correlation between the scores obtained by the women in either group and their telomere length. Therefore, it is not possible to conclude that telomere length can be correlated with cognitive performance.

20.
Front Neuroanat ; 16: 812487, 2022.
Article En | MEDLINE | ID: mdl-35221932

Retinal neurodegenerative diseases are the leading causes of visual impairment and irreversible blindness worldwide. Although the retinal response to injury remains closely similar between different retinal neurodegenerative diseases, available therapeutic alternatives are only palliative, too expensive, or very specific, such as gene therapy. In that sense, the development of broad-spectrum neuroprotective therapies seems to be an excellent option. In this regard, it is essential to identify molecular targets involved in retinal degeneration, such as cell death mechanisms. Apoptosis has been considered as the primary cell death mechanism during retinal degeneration; however, recent studies have demonstrated that the only use of anti-apoptotic drugs is not enough to confer good neuroprotection in terms of cell viability and preservation. For that reason, the interrelationship that exists between apoptosis and other cell death mechanisms needs to be characterized deeply to design future therapeutic options that simultaneously block the main cell death pathways. In that sense, the study aimed to characterize the programmed cell death (in terms of apoptosis and necroptosis) and autophagy response and modulation in retinal neurodegenerative diseases, using an in vitro model of spontaneous retinal neurodegeneration. For that purpose, we measured the mRNA relative expression through qPCR of a selected pool of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, and CASP9), necroptosis (MLKL, RIPK1, and RIPK3), and autophagy (ATG7, BCLIN1, LC3B, mTOR, and SQSTM1); besides, the immunoexpression of their encoding proteins (Casp3, MLKL, RIPK1, LC3B, and p62) were analyzed using immunohistochemistry. Our results showed an increase of pro-apoptotic and pro-necroptotic related genes and proteins during in vitro retinal neurodegeneration. Besides, we describe for the first time the modulation between programmed cell death mechanisms and autophagy in an in vitro retinal neurodegeneration model. This study reinforces the idea that cell death mechanisms are closely interconnected and provides new information about molecular signaling and autophagy along the retinal degeneration process.

...