Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Int J Biol Macromol ; 268(Pt 1): 131464, 2024 May.
Article En | MEDLINE | ID: mdl-38702248

Global concerns over environmental damage caused by non-biodegradable single-use packaging have sparked interest in developing biomaterials. The food packaging industry is a major contributor to non-degradable plastic waste. This study investigates the impact of incorporating different concentrations of polyvinyl alcohol (PVA) and yerba mate extract as a natural antioxidant into carboxymethyl cassava starch films to possibly use as active degradable packaging to enhance food shelf life. Films with starch and PVA blends (SP) at different ratios (SP radios of 100:0, 90:10, 80:20 and 70:30) with and without yerba mate extract (Y) were successfully produced through extrusion and thermoforming. The incorporation of up to 20 wt% PVA improved starch extrusion processing and enhanced film transparency. PVA played a crucial role in improving the hydrophobicity, tensile strength and flexibility of the starch films but led to a slight deceleration in their degradation in compost. In contrast, yerba mate extract contributed to better compost degradation of the blend films. Additionally, it provided antioxidant activity, particularly in hydrophilic and lipophilic food simulants, suggesting its potential to extend the shelf life of food products. Starch-PVA blend films with yerba mate extract emerged as a promising alternative for mechanically resistant and active food packaging.


Antioxidants , Food Packaging , Manihot , Plant Extracts , Polyvinyl Alcohol , Starch , Food Packaging/methods , Polyvinyl Alcohol/chemistry , Starch/chemistry , Starch/analogs & derivatives , Antioxidants/chemistry , Manihot/chemistry , Plant Extracts/chemistry , Ilex paraguariensis/chemistry , Tensile Strength , Hydrophobic and Hydrophilic Interactions , Mechanical Phenomena
2.
Data Brief ; 7: 1331-4, 2016 Jun.
Article En | MEDLINE | ID: mdl-27158645

Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: "Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent" González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature.

...