Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 133(47): 19131-52, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22060179

RESUMEN

Cationic platinum(II) complexes [((t)bpy)Pt(Ph)(L)](+) [(t)bpy =4,4'-di-tert-butyl-2,2'-bipyridyl; L = THF, NC(5)F(5), or NCMe] catalyze the hydrophenylation of ethylene to generate ethylbenzene and isomers of diethylbenzene. Using ethylene as the limiting reagent, an 89% yield of alkyl arene products is achieved after 4 h at 120 °C. Catalyst efficiency for ethylene hydrophenylation is diminished only slightly under aerobic conditions. Mechanistic studies support a reaction pathway that involves ethylene coordination to Pt(II), insertion of ethylene into the Pt-phenyl bond, and subsequent metal-mediated benzene C-H activation. Studies of stoichiometric benzene (C(6)H(6) or C(6)D(6)) C-H/C-D activation by [((t)bpy)Pt(Ph-d(n))(THF)](+) (n = 0 or 5) indicate a k(H)/k(D) = 1.4(1), while comparative rates of ethylene hydrophenylation using C(6)H(6) and C(6)D(6) reveal k(H)/k(D) = 1.8(4) for the overall catalytic reaction. DFT calculations suggest that the transition state for benzene C-H activation is the highest energy species along the catalytic cycle. In CD(2)Cl(2), [((t)bpy)Pt(Ph)(THF)][BAr'(4)] [Ar' = 3,5-bis(trifluoromethyl)phenyl] reacts with ethylene to generate [((t)bpy)Pt(CH(2)CH(2)Ph)(η(2)-C(2)H(4))][BAr'(4)] with k(obs) = 1.05(4) × 10(-3) s(-1) (23 °C, [C(2)H(4)] = 0.10(1) M). In the catalytic hydrophenylation of ethylene, substantial amounts of diethylbenzenes are produced, and experimental studies suggest that the selectivity for the monoalkylated arene is diminished due to a second aromatic C-H activation competing with ethylbenzene dissociation.


Asunto(s)
Derivados del Benceno/síntesis química , Etilenos/química , Compuestos Organometálicos/química , Platino (Metal)/química , Derivados del Benceno/química , Catálisis , Estructura Molecular , Estereoisomerismo
2.
J Chem Inf Model ; 49(9): 2111-5, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19705826

RESUMEN

The rising atmospheric concentration of CO(2) has motivated researchers to seek routes for improved utilization, increased mitigation, and enhanced sequestration of this greenhouse gas. Through a combination of bioinformatics, molecular modeling, and first-principles quantum mechanics the binding of carbon dioxide to proteins is analyzed. It is concluded that acid/base interactions are the principal chemical force by which CO(2) is bound inside proteins. With respect to regular secondary structural elements, beta-sheets show a marked preference for CO(2) binding compared to alpha-helices. The data also support the inference that while either or both oxygens of CO(2) are generally tightly bound in the protein environment, the carbon is much less "sequestered." First principles and more approximate modeling techniques are assessed for quantifying CO(2) binding thermodynamics.


Asunto(s)
Dióxido de Carbono/metabolismo , Biología Computacional , Proteínas/metabolismo , Biomimética , Calibración , Dióxido de Carbono/química , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Proteínas/química , Teoría Cuántica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...