Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(11): 113354, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37917586

RESUMEN

The study of fallopian tube (FT) function in health and disease has been hampered by limited knowledge of FT stem cells and lack of in vitro models of stem cell renewal and differentiation. Using optimized organoid culture conditions to address these limitations, we find that FT stem cell renewal is highly dependent on WNT/ß-catenin signaling and engineer endogenous WNT/ß-catenin signaling reporter organoids to biomark, isolate, and characterize these cells. Using functional approaches, as well as bulk and single-cell transcriptomics analyses, we show that an endogenous hormonally regulated WNT7A-FZD5 signaling axis is critical for stem cell renewal and that WNT/ß-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in extracellular matrix (ECM) remodeling and integrin signaling pathways. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.


Asunto(s)
Trompas Uterinas , beta Catenina , Femenino , Humanos , beta Catenina/metabolismo , Trompas Uterinas/metabolismo , Transcriptoma/genética , Células Madre/metabolismo , Vía de Señalización Wnt , Organoides/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Receptores Frizzled/metabolismo
3.
Oncogene ; 38(16): 2885-2898, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30568223

RESUMEN

Metastasis is a complex multistep process that involves critical interactions between cancer cells and a variety of stromal components in the tumor microenvironment, which profoundly influence the different aspects of the metastatic cascade and organ tropism of disseminating cancer cells. Ovarian cancer is the most lethal gynecological malignancy and is characterized by peritoneal disseminated metastasis. Evidence has demonstrated that ovarian cancer possesses specific metastatic tropism for the adipose-rich omentum, which has a pivotal role in the creation of the metastatic tumor microenvironment in the intraperitoneal cavity. Considering the distinct biology of ovarian cancer metastasis, the elucidation of the cellular and molecular mechanisms underlying the reciprocal interplay between ovarian cancer cells and surrounding stromal cell types in the adipose-rich metastatic microenvironment will provide further insights into the development of novel therapeutic approaches for patients with advanced ovarian cancer. Herein, we review the biological mechanisms that regulate the highly orchestrated crosstalk between ovarian cancer cells and various cancer-associated stromal cells in the metastatic tumor microenvironment with regard to the omentum by illustrating how different stromal cells concertedly contribute to the development of ovarian cancer metastasis and metastatic tropism for the omentum.


Asunto(s)
Tejido Adiposo/patología , Neoplasias Ováricas/patología , Microambiente Tumoral/fisiología , Femenino , Humanos , Epiplón/patología , Tropismo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA