Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fluids Barriers CNS ; 20(1): 88, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38053174

RESUMEN

Current strategies to identify ligands for brain delivery select candidates based on preferential binding to cell-membrane components (CMC) on brain endothelial cells (EC). However, such strategies generate ligands with inherent brain specificity limitations, as the CMC (e.g., the transferrin receptor TfR1) are also significantly expressed on peripheral EC. Therefore, novel strategies are required to identify molecules allowing increased specificity of therapy brain delivery. Here, we demonstrate that, while individual CMC are shared between brain EC and peripheral EC, their endocytic internalization rate is markedly different. Such differential endocytic rate may be harnessed to identify molecular tags for brain targeting based on their selective retention on the surface of brain EC, thereby generating 'artificial' targets specifically on the brain vasculature. By quantifying the retention of labelled proteins on the cell membrane, we measured the general endocytic rate of primary brain EC to be less than half that of primary peripheral (liver and lung) EC. In addition, through bio-panning of phage-displayed peptide libraries, we unbiasedly probed the endocytic rate of individual CMC of liver, lung and brain endothelial cells. We identified phage-displayed peptides which bind to CMC common to all three endothelia phenotypes, but which are preferentially endocytosed into peripheral EC, resulting in selective retention on the surface of brain EC. Furthermore, we demonstrate that the synthesized free-form peptides are capable of generating artificial cell-surface targets for the intracellular delivery of model proteins into brain EC with increasing specificity over time. The developed identification paradigm, therefore, demonstrates that the lower endocytic rate of individual CMC on brain EC can be harnessed to identify peptides capable of generating 'artificial' targets for the selective delivery of proteins into the brain vasculature. In addition, our approach identifies brain-targeting peptides which would have been overlooked by conventional identification strategies, thereby increasing the repertoire of candidates to achieve specific therapy brain delivery.


Asunto(s)
Encéfalo , Células Endoteliales , Células Endoteliales/metabolismo , Endotelio/metabolismo , Encéfalo/metabolismo , Péptidos/metabolismo
3.
Adv Mater ; 33(49): e2105254, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34622509

RESUMEN

Prevention of metastatic and local-regional recurrence of cancer after surgery remains difficult. Targeting postsurgical premetastatic niche and microresiduals presents an excellent prospective opportunity but is often challenged by poor therapeutic delivery into minimal residual tumors. Here, an enzymatically transformable polymer-based nanotherapeutic approach is presented that exploits matrix metalloproteinase (MMP) overactivation in tumor-associated tissues to guide the codelivery of colchicine (microtubule-disrupting and anti-inflammatory agent) and marimastat (MMP inhibitor). The dePEGylation of polymersomes catalyzed by MMPs not only exposes the guanidine moiety to improve tissue/cell-targeting/retention to increase bioavailability, but also differentially releases marimastat and colchicine to engage their extracellular (MMPs) and intracellular (microtubules) targets of action, respectively. In primary tumors/overt metastases, the vasculature-specific targeting of nanotherapeutics can function synchronously with the enhanced permeability and retention effect to deter malignant progression of metastatic breast cancer. After the surgical removal of large primary tumors, nanotherapeutic agents are localized in the premetastatic niche and at the site of the postsurgical wound, disrupting the premetastatic microenvironment and eliminating microresiduals, which radically reduces metastatic and local-regional recurrence. The findings suggest that nanotherapeutics can safely widen the therapeutic window to resuscitate colchicine and MMP inhibitors for other inflammatory disorders.


Asunto(s)
Neoplasias de la Mama , Nanomedicina , Neoplasias de la Mama/patología , Colchicina/uso terapéutico , Femenino , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Estudios Prospectivos , Microambiente Tumoral
4.
Proc Natl Acad Sci U S A ; 117(32): 19141-19150, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32703811

RESUMEN

Current strategies to direct therapy-loaded nanoparticles to the brain rely on functionalizing nanoparticles with ligands which bind target proteins associated with the blood-brain barrier (BBB). However, such strategies have significant brain-specificity limitations, as target proteins are not exclusively expressed at the brain microvasculature. Therefore, novel strategies which exploit alternative characteristics of the BBB are required to overcome nonspecific nanoparticle targeting to the periphery, thereby increasing drug efficacy and reducing detrimental peripheral side effects. Here, we present a simple, yet counterintuitive, brain-targeting strategy which exploits the higher impermeability of the BBB to selectively label the brain endothelium. This is achieved by harnessing the lower endocytic rate of brain endothelial cells (a key feature of the high BBB impermeability) to promote selective retention of free, unconjugated protein-binding ligands on the surface of brain endothelial cells compared to peripheral endothelial cells. Nanoparticles capable of efficiently binding to the displayed ligands (i.e., labeled endothelium) are consequently targeted specifically to the brain microvasculature with minimal "off-target" accumulation in peripheral organs. This approach therefore revolutionizes brain-targeting strategies by implementing a two-step targeting method which exploits the physiology of the BBB to generate the required brain specificity for nanoparticle delivery, paving the way to overcome targeting limitations and achieve clinical translation of neurological therapies. In addition, this work demonstrates that protein targets for brain delivery may be identified based not on differential tissue expression, but on differential endocytic rates between the brain and periphery.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos/instrumentación , Células Endoteliales/metabolismo , Nanopartículas/metabolismo , Animales , Transporte Biológico , Encéfalo/irrigación sanguínea , Endotelio/metabolismo , Humanos , Ratas , Ratas Sprague-Dawley
5.
ACS Nano ; 14(6): 6729-6742, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32431145

RESUMEN

Delivering therapeutic antibodies into the brain across the blood-brain barrier at a therapeutic level is a promising while challenging approach in the treatment of neurological disorders. Here, we present a polymeric nanomicelle (PM) system capable of delivering therapeutically effective levels of 3D6 antibody fragments (3D6-Fab) into the brain parenchyma for inhibiting Aß aggregation. PM assembly was achieved by charge-converting 3D6-Fab through pH-sensitive citraconylation to allow complexation with reductive-sensitive cationic polymers. Brain targeting was achieved by functionalizing the PM surface with glucose molecules to allow interaction with recycling glucose transporter (Glut)-1 proteins. Consequently, 41-fold enhanced 3D6-Fab accumulation in the brain was achieved by using the PM system compared to free 3D6-Fab. Furthermore, therapeutic benefits were obtained by successfully inhibiting Aß1-42 aggregation in Alzheimer's disease mice systemically treated with 3D6-Fab-loaded glucosylated PM. Hence, this nanocarrier system represents a promising method for effectively delivering functional antibody agents into the brain and treating neurological diseases.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Ratones , Ratones Transgénicos
6.
Nanoscale ; 11(45): 22054-22069, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31720664

RESUMEN

Nanoparticles capable of penetrating the blood-brain barrier (BBB) will greatly advance the delivery of therapies against brain disorders. Carbon nanotubes hold great potential as delivery vehicles due to their high aspect-ratio and cell-penetrating ability. Studies have shown multiwalled carbon nanotubes (MWCNT) cross the BBB, however they have largely relied on labelling methods to track and quantify transport, or on individual electron microscopy images to qualitatively assess transcytosis. Therefore, new direct and quantitative methods, using well-defined and unlabelled MWCNT, are needed to compare BBB translocation of different MWCNT types. Using highly controlled anionic (-), cationic (+) and non-ionic (0) functionalized MWCNT (fMWCNT), we correlate UV-visible spectroscopy with quantitative transmission electron microscopy, quantified from c. 270 endothelial cells, to examine cellular uptake, BBB transport and neurotoxicity of unlabelled fMWCNT. Our results demonstrate that: (i) a large fraction of cationic and non-ionic, but not anionic fMWCNT become trapped at the luminal brain endothelial cell membrane; (ii) despite high cell association, fMWCNT uptake by brain endothelial cells is low (<1.5% ID) and does not correlate with BBB translocation, (iii) anionic fMWCNT have highest transport levels across an in vitro model of the human BBB compared to non-ionic or cationic nanotubes; and (iv) fMWCNT are not toxic to hippocampal neurons at relevant abluminal concentrations; however, fMWCNT charge has an effect on carbon nanotube neurotoxicity at higher fMWCNT concentrations. This quantitative combination of microscopy and spectroscopy, with cellular assays, provides a crucial strategy to predict brain penetration efficiency and neurotoxicity of unlabelled MWCNT and other nanoparticle technologies relevant to human health.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Membrana Celular/metabolismo , Células Endoteliales/metabolismo , Ensayo de Materiales , Nanotubos de Carbono/química , Transcitosis/efectos de los fármacos , Animales , Transporte Biológico , Barrera Hematoencefálica/ultraestructura , Línea Celular Transformada , Membrana Celular/ultraestructura , Células Endoteliales/ultraestructura , Humanos , Nanotubos de Carbono/ultraestructura , Ratas
7.
Nanoscale ; 11(4): 2079-2088, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30648720

RESUMEN

Sensitive detection of disease biomarkers expressed by human cells is critical to the development of novel diagnostic and therapeutic methods. Here we report that plasmonic arrays based on gold nanostar (AuNS) monolayers enable up to 19-fold fluorescence enhancement for cellular imaging in the near-infrared (NIR) biological window, allowing the application of low quantum yield fluorophores for sensitive cellular imaging. The high fluorescence enhancement together with low autofluorescence interference in this wavelength range enable higher signal-to-noise ratio compared to other diagnostic modalities. Using AuNSs of different geometries and therefore controllable electric field enhancement, cellular imaging with tunable enhancement factors is achieved, which may be useful for the development of multicolour and multiplexed platforms for a panel of biomarkers, allowing to distinguish different subcell populations at the single cell level. Finally, the uptake of AuNSs within HeLa cells and their high biocompatibility, pave the way for novel high-performance in vitro and in vivo diagnostic platforms.

8.
Nanomedicine ; 15(1): 1-11, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30189294

RESUMEN

The blood-brain barrier (BBB) is a protective endothelial barrier lining the brain microvasculature which prevents brain delivery of therapies against brain diseases. Hence, there is an urgent need to develop vehicles which efficiently penetrate the BBB to deliver therapies into the brain. The drug L-DOPA efficiently and specifically crosses the BBB via the large neutral amino acid transporter (LAT)-1 protein to enter the brain. Thus, we synthesized L-DOPA-functionalized multi-branched nanoflower-like gold nanoparticles (L-DOPA-AuNFs) using a seed-mediated method involving catechols as a direct reducing-cum-capping agent, and examined their ability to cross the BBB to act as brain-penetrating nanovehicles. We show that L-DOPA-AuNFs efficiently penetrate the BBB compared to similarly sized and shaped AuNFs functionalized with a non-targeting ligand. Furthermore, we show that L-DOPA-AuNFs are efficiently internalized by brain macrophages without inducing inflammation. These results demonstrate the application of L-DOPA-AuNFs as a non-inflammatory BBB-penetrating nanovehicle to efficiently deliver therapies into the brain.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Endotelio Vascular/metabolismo , Oro/química , Levodopa/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Animales , Células Cultivadas , Dopaminérgicos/administración & dosificación , Dopaminérgicos/química , Sistemas de Liberación de Medicamentos , Endotelio Vascular/citología , Humanos , Levodopa/química , Masculino , Nanopartículas del Metal/química , Ratas , Ratas Wistar
9.
Sci Rep ; 7: 42871, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28251989

RESUMEN

Silver nanoparticles (AgNP) are known to penetrate into the brain and cause neuronal death. However, there is a paucity in studies examining the effect of AgNP on the resident immune cells of the brain, microglia. Given microglia are implicated in neurodegenerative disorders such as Parkinson's disease (PD), it is important to examine how AgNPs affect microglial inflammation to fully assess AgNP neurotoxicity. In addition, understanding AgNP processing by microglia will allow better prediction of their long term bioreactivity. In the present study, the in vitro uptake and intracellular transformation of citrate-capped AgNPs by microglia, as well as their effects on microglial inflammation and related neurotoxicity were examined. Analytical microscopy demonstrated internalization and dissolution of AgNPs within microglia and formation of non-reactive silver sulphide (Ag2S) on the surface of AgNPs. Furthermore, AgNP-treatment up-regulated microglial expression of the hydrogen sulphide (H2S)-synthesizing enzyme cystathionine-γ-lyase (CSE). In addition, AgNPs showed significant anti-inflammatory effects, reducing lipopolysaccharide (LPS)-stimulated ROS, nitric oxide and TNFα production, which translated into reduced microglial toxicity towards dopaminergic neurons. Hence, the present results indicate that intracellular Ag2S formation, resulting from CSE-mediated H2S production in microglia, sequesters Ag+ ions released from AgNPs, significantly limiting their toxicity, concomitantly reducing microglial inflammation and related neurotoxicity.


Asunto(s)
Cistationina gamma-Liasa/metabolismo , Nanopartículas del Metal/química , Microglía/citología , Neuronas/citología , Plata/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Encefalitis/tratamiento farmacológico , Encefalitis/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Lipopolisacáridos/efectos adversos , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Plata/química
10.
Brain ; 139(Pt 1): 259-75, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26614754

RESUMEN

There is an urgent need for a therapy that reverses disability after stroke when initiated in a time frame suitable for the majority of new victims. We show here that intramuscular delivery of neurotrophin-3 (NT3, encoded by NTF3) can induce sensorimotor recovery when treatment is initiated 24 h after stroke. Specifically, in two randomized, blinded preclinical trials, we show improved sensory and locomotor function in adult (6 months) and elderly (18 months) rats treated 24 h following cortical ischaemic stroke with human NT3 delivered using a clinically approved serotype of adeno-associated viral vector (AAV1). Importantly, AAV1-hNT3 was given in a clinically-feasible timeframe using a straightforward, targeted route (injections into disabled forelimb muscles). Magnetic resonance imaging and histology showed that recovery was not due to neuroprotection, as expected given the delayed treatment. Rather, treatment caused corticospinal axons from the less affected hemisphere to sprout in the spinal cord. This treatment is the first gene therapy that reverses disability after stroke when administered intramuscularly in an elderly body. Importantly, phase I and II clinical trials by others show that repeated, peripherally administered high doses of recombinant NT3 are safe and well tolerated in humans with other conditions. This paves the way for NT3 as a therapy for stroke.


Asunto(s)
Neurotrofina 3/administración & dosificación , Neurotrofina 3/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Adenoviridae , Factores de Edad , Animales , Endotelina-1/administración & dosificación , Femenino , Vectores Genéticos/administración & dosificación , Humanos , Inyecciones Intramusculares , Locomoción/efectos de los fármacos , Imagen por Resonancia Magnética , Microinyecciones , Músculo Esquelético/metabolismo , Neuroimagen , Neurotrofina 3/sangre , Neurotrofina 3/metabolismo , Tractos Piramidales/efectos de los fármacos , Ratas , Médula Espinal/metabolismo , Accidente Cerebrovascular/inducido químicamente , Factores de Tiempo
11.
Biomaterials ; 70: 57-70, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26298523

RESUMEN

Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNTs, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 h exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 h. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic, quantitative and multi-scale techniques in understanding the different cellular processing routes of functionalised nanomaterials. This correlative approach has wide implications for assessing the biopersistence of MWNT aggregates elsewhere in the body, in particular their interaction with macrophages in the lung.


Asunto(s)
Espacio Extracelular/química , Imagenología Tridimensional/métodos , Espacio Intracelular/química , Microglía/citología , Nanotubos de Carbono/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Citocinas/biosíntesis , Endocitosis/efectos de los fármacos , Ratones , Microglía/efectos de los fármacos , Microglía/ultraestructura , Nanotubos de Carbono/ultraestructura , Oxidación-Reducción , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...