RESUMEN
BACKGROUND: The progression and severity of COVID-19 vary significantly in the population. While the hallmarks of SARS-CoV-2 and severe COVID-19 within routine laboratory parameters are emerging, the impact of sex and age on these profiles is still unknown. METHODS: A multidimensional analysis was performed involving millions of records of laboratory parameters and diagnostic tests for 178 887 individuals from Brazil, of whom 33 266 tested positive for SARS-CoV-2. Analyzed data included those relating to complete blood cell count, electrolytes, metabolites, arterial blood gases, enzymes, hormones, cancer biomarkers, and others. FINDINGS: COVID-19 induced similar alterations in laboratory parameters in males and females. CRP and ferritin were increased, especially in older men with COVID-19, whereas abnormal liver function tests were common across several age groups, except for young women. Low peripheral blood basophils and eosinophils were more common in the elderly with COVID-19. Both male and female COVID-19 patients admitted to intensive care units displayed alterations in the coagulation system, and higher values for neutrophils, CRP, and lactate dehydrogenase. CONCLUSIONS: Our study uncovered the laboratory profiles of a large cohort of COVID-19 patients, which formed the basis of discrepancies influenced by aging and biological sex. These profiles directly linked COVID-19 disease presentation to an intricate interplay between sex, age, and immune activation.
Asunto(s)
COVID-19/sangre , Inflamación/etiología , SARS-CoV-2 , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Proteína C-Reactiva/análisis , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Caracteres Sexuales , Adulto JovenRESUMEN
Patients infected with the Dengue virus (DENV) often present with a massive generation of DENV-specific antibody-secreting cells (ASCs) in the blood. In some cases, these ASCs represent more than 50% of the circulating B cells, a higher magnitude than those induced by other infections, vaccinations, and plasma cell lymphomas. However, it remains unclear how the DENV infection elicits this colossal response. To address this issue, we utilised an in vitro strategy to induce human PBMCs of healthy individuals incubated with DENV particles (DENV4 TVP/360) to differentiate into ASCs. As controls, PBMCs were incubated with a mitogen cocktail or supernatants of uninfected C6/36 cells (mock). The ASC phenotype and function were increasingly detected in the DENV and mitogen-cultured PBMCs as compared to mock-treated cells. In contrast to the in vivo condition, secreted IgG derived from the PBMC-DENV culture was not DENV-specific. Lower ASC numbers were observed when inactivated viral particles or purified B cells were added to the cultures. The physical contact was essential between B cells and the remaining PBMCs for the DENV-mediated ASC response. Considering the evidence for the activation of the tryptophan metabolism detected in the serum of Dengue patients, we assessed its relevance in the DENV-mediated ASC differentiation. For this, tryptophan and its respective metabolites were quantified in the supernatants of cell cultures through mass spectrophotometry. Tryptophan depletion and kynurenine accumulation were found in the supernatants of PBMC-DENV cultures, which presented enhanced detection of indoleamine 2,3-dioxygenase 1 and 2 transcripts as compared to controls. In PBMC-DENV cultures, tryptophan and kynurenine levels strongly correlated to the respective ASC numbers, while the kynurenine levels were directly proportional to the secreted IgG titers. Contrastingly, PBMCs incubated with Zika or attenuated Yellow Fever viruses showed no correlation between their kynurenine concentrations and ASC numbers. Therefore, our data revealed the existence of distinct pathways for the DENV-mediated ASC differentiation and suggest the involvement of the tryptophan metabolism in this cellular process triggered by flavivirus infections.
Asunto(s)
Linfocitos B/inmunología , Linfocitos B/virología , Diferenciación Celular/inmunología , Virus del Dengue/inmunología , Dengue/metabolismo , Triptófano/metabolismo , Fiebre Amarilla/metabolismo , Virus de la Fiebre Amarilla/inmunología , Infección por el Virus Zika/metabolismo , Virus Zika/inmunología , Donantes de Sangre , Células Cultivadas , Dengue/inmunología , Dengue/virología , Humanos , Quinurenina/metabolismo , Fiebre Amarilla/inmunología , Fiebre Amarilla/virología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virologíaRESUMEN
Subjects receiving the same vaccine often show different levels of immune responses and some may even present adverse side effects to the vaccine. Systems vaccinology can combine omics data and machine learning techniques to obtain highly predictive signatures of vaccine immunogenicity and reactogenicity. Currently, several machine learning methods are already available to researchers with no background in bioinformatics. Here we described the four main steps to discover markers of vaccine immunogenicity and reactogenicity: (1) Preparing the data; (2) Selecting the vaccinees and relevant genes; (3) Choosing the algorithm; (4) Blind testing your model. With the increasing number of Systems Vaccinology datasets being generated, we expect that the accuracy and robustness of signatures of vaccine reactogenicity and immunogenicity will significantly improve.
Asunto(s)
Anticuerpos Antibacterianos , Inmunogenicidad Vacunal , HumanosRESUMEN
The largest ever recorded epidemic of the Chikungunya virus (CHIKV) broke out in 2004 and affected four continents. Acute symptomatic infections are typically associated with the onset of fever and often debilitating polyarthralgia/polyarthritis. In this study, a systems biology approach was adopted to analyze the blood transcriptomes of adults acutely infected with the CHIKV. Gene signatures that were associated with viral RNA levels and the onset of symptoms were identified. Among these genes, the putative role of the Eukaryotic Initiation Factor (eIF) family genes and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC3A) in the CHIKV replication process were displayed. We further compared these signatures with signatures induced by the Dengue virus infection and rheumatoid arthritis. Finally, we demonstrated that the CHIKV in vitro infection of murine bone marrow-derived macrophages induced IL-1 beta production in a mechanism that is significantly dependent on the inflammasome NLRP3 activation. The observations provided valuable insights into virus-host interactions during the acute phase and can be instrumental in the investigation of new and effective therapeutic interventions.
Asunto(s)
Artritis/inmunología , Fiebre Chikungunya/inmunología , Virus Chikungunya/fisiología , Citidina Desaminasa/inmunología , Proteínas/inmunología , Replicación Viral/inmunología , Adulto , Animales , Artritis/patología , Artritis/virología , Fiebre Chikungunya/patología , Virus del Dengue/inmunología , Virus del Dengue/patogenicidad , Femenino , Fiebre/inmunología , Fiebre/patología , Fiebre/virología , Estudios de Seguimiento , Humanos , Interleucina-1beta/inmunología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/inmunologíaRESUMEN
The largest ever recorded epidemic of the Chikungunya virus (CHIKV) broke out in 2004 and affected four continents. Acute symptomatic infections are typically associated with the onset of fever and often debilitating polyarthralgia/polyarthritis. In this study, a systems biology approach was adopted to analyze the blood transcriptomes of adults acutely infected with the CHIKV. Gene signatures that were associated with viral RNA levels and the onset of symptoms were identified. Among these genes, the putative role of the Eukaryotic Initiation Factor (eIF) family genes and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC3A) in the CHIKV replication process were displayed. We further compared these signatures with signatures induced by the Dengue virus infection and rheumatoid arthritis. Finally, we demonstrated that the CHIKV in vitro infection of murine bone marrow-derived macrophages induced IL-1 beta production in a mechanism that is significantly dependent on the inflammasome NLRP3 activation. The observations provided valuable insights into virus-host interactions during the acute phase and can be instrumental in the investigation of new and effective therapeutic interventions.
RESUMEN
An early immune response to Zika virus (ZIKV) infection may determine its clinical manifestation and outcome, including neurological effects. However, low-grade and transient viremia limits the prompt diagnosis of acute ZIKV infection. We have investigated the plasma cytokine, chemokine, and growth factor profiles of 36 individuals from an endemic area displaying different symptoms such as exanthema, headache, myalgia, arthralgia, fever, hyperemia, swelling, itching, and nausea during early-phase infection. These profiles were then associated with symptoms, revealing important aspects of the immunopathophysiology of ZIKV infection. The levels of some cytokines/chemokines were significantly higher in acute ZIKV-infected individuals compared to healthy donors, including interferon (IFN) gamma-induced protein 10 (IP-10), regulated on activation, normal T cell expressed and secreted (RANTES), IFN-γ, interleukin (IL)-9, IL-7, IL-5, and IL-1ra, including some with predominantly immunoregulatory activity. Of note, we found that higher levels of IP-10 and IL-5 in ZIKV-infected individuals were strongly associated with exanthema and headache, respectively. Also, higher levels of IL-1ra were associated with subjects with arthralgia, whereas those with fever showed lower levels of granulocyte-colony stimulating factor (G-CSF). No correlation was observed between the number of symptoms and ZIKV viral load. Interestingly, only IP-10 showed significantly decreased levels in the recovery phase. In conclusion, our results indicate that acute ZIKV infection in a larger cohort resident to an endemic area displays a modest systemic immune activation profile, involving both proinflammatory and immunoregulatory cytokines and chemokines that could participate of virus control. In addition, we showed that differential cytokine/chemokine levels are related to specific clinical symptoms, suggesting their participation in underlying mechanisms.