Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37765639

RESUMEN

Additive manufacturing (AM) nowadays has become a supportive method of traditional manufacturing. In particular, the medical and healthcare industry can profit from these developments in terms of personalized design and batches ranging from one to five specimens overall. In terms of polymers, polyolefins are always an interesting topic due to their low prices, inert chemistry, and crystalline structure resulting in preferable mechanical properties. Their semi-crystalline nature has some advantages but are challenging for AM due to their shrinkage and warping, resulting in geometrical inaccuracies or even layer detaching during the process. To tackle these issues, process parameter optimization is vital, with one important parameter to be studied more in detail, the print envelope temperature. It is well known that higher print envelope temperatures lead to better layer adhesion overall, but this investigation focuses on the mechanical properties and resulting morphology of a semi-crystalline thermoplastic polyolefin. Further, two different AM technologies, namely material jetting (ARBURG plastic freeforming-APF) and filament-based material extrusion, were studied and compared in detail. It was shown that higher print envelope temperatures lead to more isotropic behavior based on an evenly distributed morphology but results in geometrical inaccuracies since the material is kept in a molten state during printing. This phenomenon especially could be seen in the stress and strain values at break at high elongations. Furthermore, a different crystal structure can be achieved by setting a specific temperature and printing time, also resulting in peak values of certain mechanical properties. In comparison, better results could be archived by the APF technology in terms of mechanical properties and homogeneous morphology. Nevertheless, real isotropic part behavior could not be managed which was shown by the specimen printed vertically. Hence, a sweet spot between geometrical and mechanical properties still has to be found.

2.
Polymers (Basel) ; 15(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37514397

RESUMEN

The current study presents the effect of the backbone as an important binder component on the mechanical, rheological, and thermal properties of Aluminium (Al) alloy feedstocks. A thermoplastic elastomer (TPE) main binder component was blended with either polypropylene (PP), grafted-maleic anhydride-PP (PPMA), or grafted-maleic anhydride-PPwax (PPMAwax) plus PP, as the backbone. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) tests were performed to investigate the thermal properties of binder systems and feedstocks. Fourier-transform infrared (FTIR) spectroscopy was used to study the chemical interaction between the binder and the Al alloy. After making feedstock filaments, tensile tests, scanning electron microscopy (SEM), and fused filament fabrication (FFF) printing were done. The results showed that although the PP printability was acceptable, the best mechanical properties and printed quality can be achieved by PPMA. TGA test showed that all binder systems in the feedstocks could be removed completely around 500 °C. From FTIR, the possibility of chemical reactions between Al alloy particles and maleic anhydride groups on the grafted PP backbone could explain the better dispersion of the mixture and higher mechanical properties. Tensile strength in PP samples was 3.4 MPa which was improved 1.8 times using PPMA as the backbone.

3.
Polymers (Basel) ; 15(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36850116

RESUMEN

Triple-shape polymers can memorize two independent shapes during a controlled recovery process. This work reports the 4D printing of electro-active triple-shape composites based on thermoplastic blends. Composite blends comprising polyester urethane (PEU), polylactic acid (PLA), and multiwall carbon nanotubes (MWCNTs) as conductive fillers were prepared by conventional melt processing methods. Morphological analysis of the composites revealed a phase separated morphology with aggregates of MWCNTs uniformly dispersed in the blend. Thermal analysis showed two different transition temperatures based on the melting point of the crystallizable switching domain of the PEU (Tm~50 ± 1 °C) and the glass transition temperature of amorphous PLA (Tg~61 ± 1 °C). The composites were suitable for 3D printing by fused filament fabrication (FFF). 3D models based on single or multiple materials were printed to demonstrate and quantify the triple-shape effect. The resulting parts were subjected to resistive heating by passing electric current at different voltages. The printed demonstrators were programmed by a thermo-mechanical programming procedure and the triple-shape effect was realized by increasing the voltage in a stepwise fashion. The 3D printing of such electroactive composites paves the way for more complex shapes with defined geometries and novel methods for triggering shape memory, with potential applications in space, robotics, and actuation technologies.

4.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36433087

RESUMEN

This work aims to better understand the type of thermoplastic binders required to produce highly loaded copper filaments that can be successfully printed via low-cost filament-based material extrusion (MEX). Compounding feedstock material with 55 vol.% of copper and three multi-component binder systems has been performed. The MEX behavior of these feedstocks was evaluated by depositing material at different speeds and appropriately selecting the extrusion temperature depending on the binder composition. The rest of the MEX parameters remained constant to evaluate the printing quality for the different feedstocks. Printable filaments were produced with low ovality and good surface quality. The filaments showed good dispersion of the powder and polymeric binder system in SEM analysis. The feedstock mechanical properties, i.e., the tensile strength of the filament, were sufficient to ensure proper feeding in the MEX machine. The viscosity of the feedstock systems at the adjusted printing temperatures lies in the range of 102-103 Pa·s at the shear rate of 100-1000 s-1, which appears to be sufficient to guarantee the correct flowability and continuous extrusion. The tensile properties vary greatly (e.g., ultimate tensile strength 3-9.8 MPa, elongation at break 1.5-40.5%), and the most fragile filament could not be reliably printed at higher speeds. Micrographs of the cross-section of printed parts revealed that as the printing speed increased, the porosity was minimized because the volumetric flow of the feedstock material increased, which can help to fill pores. This study offers new insights into the feedstock requirements needed to produce low-cost intricate copper components of high quality in a reliable and efficient manner. Such components can find many applications in the electronics, biomedical, and many other industries.

5.
J Mater Sci ; 57(21): 9541-9555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663460

RESUMEN

This study demonstrates metal fused filament fabrication (MF3) as an alternative additive and highly flexible manufacturing method for free-form fabrication of high-performance alloys. This novel processing, which is similar to Metal injection molding (MIM), enables a significant reduction in manufacturing costs for complex geometries, since expensive machining can be avoided. Utilizing existing equipment and reducing material expense, MF3 can pave the way for new and low-cost applications of IN 718, which were previously limited by high manufacturing costs. Iterative process optimization is used to find the most suitable MF3 process parameters. High relative density above 97% after pressureless sintering can be achieved if temperature profiles and atmospheres are well adjusted for thermal debinding and sintering. In this study, the influence of processing parameters on the resulting microstructure of MF3 IN 718 is investigated. Samples sintered in vacuum show coarse-grained microstructure with an area fraction of 0.36% NbC at grain boundaries. Morphology and composition of formed precipitates are analyzed using transmission electron microscopy and atom probe tomography. The γ/γ″/γ' phases' characteristics for IN 718 were identified. Conventional heat treatment is applied for further tailoring of mechanical properties like hardness, toughness and creep behavior. Fabricated samples achieve mechanical properties similar to MIM IN 718 presented in literature.

6.
Polymers (Basel) ; 14(4)2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35215731

RESUMEN

The most widely used 3D process, fused deposition modeling (FDM), has insufficient interlayer adhesion due to its layer-by-layer forming method. A support material is also essential for the hollow parts and cantilevers. Moreover, the polymer materials used have limited mechanical properties. These issues have restricted the application of FDM in high-performance fields. Continuous fiber-reinforced thermoplastic composites (CFRTPCs) have high mechanical properties and have recently become the focus of research in the field of 3D printing. This paper, using pipe parts as an example, proposes a hybrid of pure polymer (pure PLA used) and CFRTPC (flax fiber pre-impregnated filament) material to develop a printing method based on the outstanding mechanical properties of CFRTPC material. After studying the printing path planning algorithm, the CFRTPC filament is laid along the axial and radial directions on the surface of the polymer base to improve the printed parts' properties. The method feasibility and algorithm accuracy are verified through the development of five-axis printing equipment with a double nozzle. Through the printed sample's tensile, compression and bending tests, the results show that the tensile, compressive and bending properties of PLA pipe can be significantly enhanced by laying CFRTPC filament along the axial and radial directions of the pipe. To summarize, the introduction of CFRTPCs greatly improved the mechanical properties of the printed parts, and the implementation of our method provides an effective way to solve the defects of the FDM process.

7.
Materials (Basel) ; 16(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614718

RESUMEN

Powder injection molding (PIM) is a well-known technique to manufacture net-shaped, complicated, macro or micro parts employing a wide range of materials and alloys. Depending on the pressure applied to inject the feedstock, this process can be separated into low-pressure (LPIM) and high-pressure (HPIM) injection molding. Although the LPIM and HPIM processes are theoretically similar, all steps have substantial differences, particularly feedstock preparation, injection, and debinding. After decades of focusing on HPIM, low-viscosity feedstocks with improved flowability have recently been produced utilizing low-molecular-weight polymers for LPIM. It has been proven that LPIM can be used for making parts in low quantities or mass production. Compared to HPIM, which could only be used for the mass production of metallic and ceramic components, LPIM can give an outstanding opportunity to cover applications in low or large batch production rates. Due to the use of low-cost equipment, LPIM also provides several economic benefits. However, establishing an optimal binder system for all powders that should be injected at extremely low pressures (below 1 MPa) is challenging. Therefore, various defects may occur throughout the mixing, injection, debinding, and sintering stages. Since all steps in the process are interrelated, it is important to have a general picture of the whole process which needs a scientific overview. This paper reviews the potential of LPIM and the characteristics of all steps. A complete academic and research background survey on the applications, challenges, and prospects has been indicated. It can be concluded that although many challenges of LPIM have been solved, it could be a proper solution to use this process and materials in developing new applications for technologies such as additive manufacturing and processing of sensitive alloys.

8.
Materials (Basel) ; 14(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562577

RESUMEN

Photopolymerization has undergone significant development in recent years. It enables fast and easy processing of materials with customized properties and allows precise printing of complex surface geometries. Nevertheless, photopolymerization is mainly applied to cure thin films since the low curing depth limits the fast production of large volumes. Frontal photopolymerization (FPP) is suitable to overcome these limitations so that curing of centimeter-thick (meth)acrylic layers can be accomplished within minutes by light induction only. Prerequisites, however, are the low optical density of the resin and bleaching ability of the photoinitiator. To date, tailored FPP-resins are not commercially available. This study discusses the potential of long-chain polyether dimethacrylates, offering high-temperature resistance and low optical density, as crosslinkers in photobleaching resins and investigates the mechanical properties of photofrontally-cured copolymers. Characteristics ranging from ductile to hard and brittle are observed in tensile tests, demonstrating that deep curing and versatile material properties are achieved with FPP. Analyzed components display uniform polymerization over a depth of four centimeters in Fourier transform infrared spectroscopy and swelling tests.

9.
Polymers (Basel) ; 12(11)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198390

RESUMEN

The Arburg Plastic Freeforming process (APF) is a unique additive manufacturing material jetting method. In APF, a thermoplastic material is supplied as pellets, melted and selectively deposited as droplets, enabling the use of commercial materials in their original shape instead of filaments. The medical industry could significantly benefit from the use of additive manufacturing for the onsite fabrication of customized medical aids and therapeutic devices in a fast and economical way. In the medical field, the utilized materials need to be certified for such applications and cannot be altered in any way to make them printable, because modifications annul the certification. Therefore, it is necessary to modify the processing conditions rather than the materials for successful printing. In this research, a medical-grade poly(methyl methacrylate) was analyzed. The deposition parameters were kept constant, while the drop aspect ratio, discharge rate, melt temperatures, and build chamber temperature were varied to obtain specimens with different geometrical accuracy. Once satisfactory geometrical accuracy was obtained, tensile properties of specimens printed individually or in batches of five were tested in two different orientations. It was found that parts printed individually with an XY orientation showed the highest tensile properties; however, there is still room for improvement by optimizing the processing conditions to maximize the mechanical strength of printed specimens.

10.
Materials (Basel) ; 13(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679838

RESUMEN

The fused filament fabrication (FFF) of ceramics enables the additive manufacturing of components with complex geometries for many applications like tooling or prototyping. Nevertheless, due to the many factors involved in the process, it is difficult to separate the effect of the different parameters on the final properties of the FFF parts, which hinders the expansion of the technology. In this paper, the effect of the fill pattern used during FFF on the defects and the mechanical properties of zirconia components is evaluated. The zirconia-filled filaments were produced from scratch, characterized by different methods and used in the FFF of bending bars with infill orientations of 0°, ±45° and 90° with respect to the longest dimension of the specimens. Three-point bending tests were conducted on the specimens with the side in contact with the build platform under tensile loads. Next, the defects were identified with cuts in different sections. During the shaping by FFF, pores appeared inside the extruded roads due to binder degradation and or moisture evaporation. The changes in the fill pattern resulted in different types of porosity and defects in the first layer, with the latter leading to earlier fracture of the components. Due to these variations, the specimens with the 0° infill orientation had the lowest porosity and the highest bending strength, followed by the specimens with ±45° infill orientation and finally by those with 90° infill orientation.

11.
Materials (Basel) ; 13(3)2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046236

RESUMEN

Fused filament fabrication (FFF) combined with debinding and sintering could be an economical process for three-dimensional (3D) printing of metal parts. In this paper, compounding, filament making, and FFF processing of feedstock material with 55% vol. of 17-4PH stainless steel powder in a multicomponent binder system are presented. The experimental part of the paper encompasses central composite design for optimization of the most significant 3D printing parameters (extrusion temperature, flow rate multiplier, and layer thickness) to obtain maximum tensile strength of the 3D-printed specimens. Here, only green specimens were examined in order to be able to determine the optimal parameters for 3D printing. The results show that the factor with the biggest influence on the tensile properties was flow rate multiplier, followed by the layer thickness and finally the extrusion temperature. Maximizing all three parameters led to the highest tensile properties of the green parts.

12.
Polymers (Basel) ; 11(8)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394766

RESUMEN

Due to a lack of long-term experience with burgeoning material extrusion-based additive manufacturing technology, also known as fused filament fabrication (FFF), considerable amounts of expensive material will continue to be wasted until a defect-free 3D-printed component can be finalized. In order to lead this advanced manufacturing technique toward cleaner production and to save costs, this study addresses the ability to remanufacture a wide range of commercially available filaments. Most of them either tend to degrade by chain scission or crosslinking. Only polypropylene (PP)-based filaments appear to be particularly thermally stable and therefore suitable for multiple remanufacturing sequences. As the extrusion step exerts the largest influence on the material in terms of temperature and shear load, this study focused on the morphological, rheological, thermal, processing, tensile, and impact properties of a promising PP composite in the course of multiple consecutive extrusions as well as the impact of additional heat stabilizers. Even after 15 consecutive filament extrusions, the stabilized additively manufactured PP composite revealed an unaltered morphology and therefore the same tensile and impact strength as the initial material. As the viscosity of the material of the 15th extrusion was nearly identical to that of the 1st extrusion sequence, the processability both in terms of extrusion and FFF was outstanding, despite the tremendous amount of shear and thermal stress that was undergone. The present work provides key insights into one possible step toward more sustainable production through FFF.

13.
Materials (Basel) ; 11(5)2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29783705

RESUMEN

Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.

14.
Polymers (Basel) ; 10(5)2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-30966524

RESUMEN

Polypropylene (PP) parts produced by means of extrusion-based additive manufacturing, also known as fused filament fabrication, are prone to detaching from the build platform due to their strong tendency to shrink and warp. Apart from incorporating high volume fractions of fillers, one approach to mitigate this issue is to improve the adhesion between the first deposited layer and the build platform. However, a major challenge for PP is the lack of adhesion on standard platform materials, as well as a high risk of welding on PP-based platform materials. This study reports the material selection of build platform alternatives based on contact angle measurements. The adhesion forces, investigated by shear-off measurements, between PP-based filaments and the most promising platform material, an ultra-high-molecular-weight polyethylene (UHMW-PE), were optimised by a thorough parametric study. Higher adhesion forces were measured by increasing the platform and extrusion temperatures, increasing the flow rate and decreasing the thickness of the first layer. Apart from changes in printer settings, an increased surface roughness of the UHMW-PE platform led to a sufficient, weld-free adhesion for large-area parts of PP-based filaments, due to improved wetting, mechanical interlockings, and an increased surface area between the two materials in contact.

15.
Polymers (Basel) ; 8(10)2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-30974636

RESUMEN

The interactions and conformational characteristics of confined molten polypropylene (PP) chains between ferric oxide (Fe2O3) substrates were investigated by molecular dynamics (MD) simulations. A comparative analysis of the adsorbed amount shows strong adsorption of the chains on the high-energy surface of Fe2O3. Local structures formed in the polymer film were studied utilizing density profiles, orientation of bonds, and end-to-end distance of chains. At interfacial regions, the backbone carbon-carbon bonds of the chains preferably orient in the direction parallel to the surface while the carbon-carbon bonds with the side groups show a slight tendency to orient normal to the surface. Based on the conformation tensor data, the chains are compressed in the normal direction to the substrates in the interfacial regions while they tend to flatten in parallel planes with respect to the surfaces. The orientation of the bonds as well as the overall flattening of the chains in planes parallel to the solid surfaces are almost identical to that of the unconfined PP chains. Also, the local pressure tensor is anisotropic closer to the solid surfaces of Fe2O3 indicating the influence of the confinement on the buildup imbalance of normal and tangential pressures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...