Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 12(1): 3, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167174

RESUMEN

Alzheimer's Disease (AD) is a disorder characterized by cognitive decline, neurodegeneration, and accumulation of amyloid plaques and tau neurofibrillary tangles in the brain. Dysregulation of epigenetic histone modifications may lead to expression of transcriptional programs that play a role either in protecting against disease genesis or in worsening of disease pathology. One such histone modification, acetylation of histone H3 lysine residue 27 (H3K27ac), is primarily localized to genomic enhancer regions and promotes active gene transcription. We previously discovered H3K27ac to be more abundant in AD patient brain tissue compared to the brains of age-matched non-demented controls. In this study, we use iPSC-neurons derived from familial AD patients with an amyloid precursor protein (APP) duplication (APPDup neurons) as a model to study the functional effect of lowering CBP/P300 enzymes that catalyze H3K27ac. We found that homeostatic amyloid-reducing genes were upregulated in the APPDup neurons compared to non-demented controls. We lowered CBP/P300 to reduce H3K27ac, which led to decreased expression of numerous of these homeostatic amyloid-reducing genes, along with increased extracellular secretion of a toxic amyloid-ß species, Aß(1-42). Our findings suggest that epigenomic histone acetylation, including H3K27ac, drives expression of compensatory genetic programs in response to AD-associated insults, specifically those resulting from APP duplication, and thus may play a role in mitigating AD pathology in neurons.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Histonas/genética , Acetilación , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo , Proteínas tau/metabolismo
2.
Immunity ; 56(10): 2388-2407.e9, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37776850

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy targeting CD19 has achieved tremendous success treating B cell malignancies; however, some patients fail to respond due to poor autologous T cell fitness. To improve response rates, we investigated whether disruption of the co-inhibitory receptors CTLA4 or PD-1 could restore CART function. CRISPR-Cas9-mediated deletion of CTLA4 in preclinical models of leukemia and myeloma improved CAR T cell proliferation and anti-tumor efficacy. Importantly, this effect was specific to CTLA4 and not seen upon deletion of CTLA4 and/or PDCD1 in CAR T cells. Mechanistically, CTLA4 deficiency permitted unopposed CD28 signaling and maintenance of CAR expression on the T cell surface under conditions of high antigen load. In clinical studies, deletion of CTLA4 rescued the function of T cells from patients with leukemia that previously failed CAR T cell treatment. Thus, selective deletion of CTLA4 reinvigorates dysfunctional chronic lymphocytic leukemia (CLL) patient T cells, providing a strategy for increasing patient responses to CAR T cell therapy.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Receptores Quiméricos de Antígenos , Humanos , Receptores de Antígenos de Linfocitos T/metabolismo , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Linfocitos T , Inmunoterapia Adoptiva , Antígenos CD19
3.
Sci Adv ; 9(29): eadh2605, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37467321

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy is used in treating human hematological malignancies, but its efficacy is limited by T cell exhaustion (TEX). TEX arises at the expense of central memory T cells (TCM), which exhibit robust antitumor efficacy. Reduction of the TET2 gene led to increased TCM differentiation in a patient with leukemia who experienced a complete remission. We show that loss of TET2 led to increased chromatin accessibility at exhaustion regulators TOX and TOX2, plus increased expression of TOX2. Knockdown of TOX increased the percentage of TCM. However, unexpectedly, knockdown of TOX2 decreased TCM percentage and reduced proliferation. Consistently, a TCM gene signature was reduced in the TOX2 knockdown, and TOX2 bound to promoters of numerous TCM genes. Our results thus suggest a role for human TOX2, in contrast to exhaustion regulator TOX, as a potentiator of central memory differentiation of CAR T cells, with plausible utility in CAR T cell cancer therapy via modulated TOX2 expression.


Asunto(s)
Dioxigenasas , Neoplasias , Humanos , Diferenciación Celular/genética , Dioxigenasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inmunoterapia Adoptiva , Neoplasias/metabolismo , Linfocitos T
4.
Cancer Discov ; 12(6): 1462-1481, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35320348

RESUMEN

Altered RNA expression of repetitive sequences and retrotransposition are frequently seen in colorectal cancer, implicating a functional importance of repeat activity in cancer progression. We show the nucleoside reverse transcriptase inhibitor 3TC targets activities of these repeat elements in colorectal cancer preclinical models with a preferential effect in p53-mutant cell lines linked with direct binding of p53 to repeat elements. We translate these findings to a human phase II trial of single-agent 3TC treatment in metastatic colorectal cancer with demonstration of clinical benefit in 9 of 32 patients. Analysis of 3TC effects on colorectal cancer tumorspheres demonstrates accumulation of immunogenic RNA:DNA hybrids linked with induction of interferon response genes and DNA damage response. Epigenetic and DNA-damaging agents induce repeat RNAs and have enhanced cytotoxicity with 3TC. These findings identify a vulnerability in colorectal cancer by targeting the viral mimicry of repeat elements. SIGNIFICANCE: Colorectal cancers express abundant repeat elements that have a viral-like life cycle that can be therapeutically targeted with nucleoside reverse transcriptase inhibitors (NRTI) commonly used for viral diseases. NRTIs induce DNA damage and interferon response that provide a new anticancer therapeutic strategy. This article is highlighted in the In This Issue feature, p. 1397.


Asunto(s)
Neoplasias Colorrectales , ADN Polimerasa Dirigida por ARN , Animales , Antivirales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , ADN , Humanos , Interferones/metabolismo , Lamivudine , Estadios del Ciclo de Vida , ARN , ADN Polimerasa Dirigida por ARN/metabolismo , Proteína p53 Supresora de Tumor/genética
5.
Cell ; 184(25): 6081-6100.e26, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34861191

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in hematological malignancies but remains ineffective in solid tumors, due in part to CAR T cell exhaustion in the solid tumor microenvironment. To study dysfunction of mesothelin-redirected CAR T cells in pancreatic cancer, we establish a robust model of continuous antigen exposure that recapitulates hallmark features of T cell exhaustion and discover, both in vitro and in CAR T cell patients, that CAR dysregulation is associated with a CD8+ T-to-NK-like T cell transition. Furthermore, we identify a gene signature defining CAR and TCR dysregulation and transcription factors, including SOX4 and ID3 as key regulators of CAR T cell exhaustion. Our findings shed light on the plasticity of human CAR T cells and demonstrate that genetic downmodulation of ID3 and SOX4 expression can improve the efficacy of CAR T cell therapy in solid tumors by preventing or delaying CAR T cell dysfunction.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias Pancreáticas/terapia , Receptores Quiméricos de Antígenos/inmunología , Animales , Linfocitos T CD8-positivos/citología , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas Inhibidoras de la Diferenciación/inmunología , Masculino , Ratones , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Proteínas de Neoplasias/inmunología , Factores de Transcripción SOXC/inmunología
6.
Mol Cell ; 81(8): 1666-1681.e6, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33823140

RESUMEN

Nuclear speckles are prominent nuclear bodies that contain proteins and RNA involved in gene expression. Although links between nuclear speckles and gene activation are emerging, the mechanisms regulating association of genes with speckles are unclear. We find that speckle association of p53 target genes is driven by the p53 transcription factor. Focusing on p21, a key p53 target, we demonstrate that speckle association boosts expression by elevating nascent RNA amounts. p53-regulated speckle association did not depend on p53 transactivation functions but required an intact proline-rich domain and direct DNA binding, providing mechanisms within p53 for regulating gene-speckle association. Beyond p21, a substantial subset of p53 targets have p53-regulated speckle association. Strikingly, speckle-associating p53 targets are more robustly activated and occupy a distinct niche of p53 biology compared with non-speckle-associating p53 targets. Together, our findings illuminate regulated speckle association as a mechanism used by a transcription factor to boost gene expression.


Asunto(s)
Núcleo Celular/genética , Regulación de la Expresión Génica/genética , Proteínas Nucleares/genética , ARN/genética , Activación Transcripcional/genética , Proteína p53 Supresora de Tumor/genética , ADN/genética , Células HEK293 , Humanos , Cuerpos de Inclusión Intranucleares/genética , Unión Proteica/genética , Factores de Transcripción/genética , Transcripción Genética/genética
7.
Cancer Discov ; 10(4): 552-567, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32001516

RESUMEN

Primary resistance to CD19-directed chimeric antigen receptor T-cell therapy (CART19) occurs in 10% to 20% of patients with acute lymphoblastic leukemia (ALL); however, the mechanisms of this resistance remain elusive. Using a genome-wide loss-of-function screen, we identified that impaired death receptor signaling in ALL led to rapidly progressive disease despite CART19 treatment. This was mediated by an inherent resistance to T-cell cytotoxicity that permitted antigen persistence and was subsequently magnified by the induction of CAR T-cell functional impairment. These findings were validated using samples from two CAR T-cell clinical trials in ALL, where we found that reduced expression of death receptor genes was associated with worse overall survival and reduced T-cell fitness. Our findings suggest that inherent dysregulation of death receptor signaling in ALL directly leads to CAR T-cell failure by impairing T-cell cytotoxicity and promoting progressive CAR T-cell dysfunction. SIGNIFICANCE: Resistance to CART19 is a significant barrier to efficacy in the treatment of B-cell malignancies. This work demonstrates that impaired death receptor signaling in tumor cells causes failed CART19 cytotoxicity and drives CART19 dysfunction, identifying a novel mechanism of antigen-independent resistance to CAR therapy.See related commentary by Green and Neelapu, p. 492.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores Quiméricos de Antígenos/metabolismo , Receptores de Muerte Celular/metabolismo , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Transducción de Señal
8.
Leukemia ; 32(10): 2178-2188, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29556023

RESUMEN

Acute myeloid leukemia (AML) often harbors mutations in epigenetic regulators, and also has frequent DNA hypermethylation, including the presence of CpG island methylator phenotypes (CIMPs). Although global hypomethylation is well known in cancer, the question of whether distinct demethylator phenotypes (DMPs) exist remains unanswered. Using Illumina 450k arrays for 194 patients from The Cancer Genome Atlas, we identified two distinct DMPs by hierarchical clustering: DMP.1 and DMP.2. DMP.1 cases harbored mutations in NPM1 (94%), FLT3 (71%) and DNMT3A (61%). Surprisingly, only 40% of patients with DNMT3A mutations were DMP.1, which has implications for mechanisms of transformation by this mutation. In contrast, DMP.2 AML was comprised of patients with t(8;21), inv(16) or t(15;17), suggesting common methylation defects connect these disparate rearrangements. RNA-seq revealed upregulated genes functioning in immune response (DMP.1) and development (DMP.2). We confirmed these findings by integrating independent 450k data sets (236 additional cases), and found prognostic effects by DMP status, independent of age and cytogenetics. The existence of DMPs has implications for AML pathogenesis and may augment existing tools in risk stratification.


Asunto(s)
Metilación de ADN/genética , Leucemia Mieloide Aguda/genética , Adulto , Anciano , Anciano de 80 o más Años , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Epigénesis Genética/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas Nucleares/genética , Nucleofosmina , Fenotipo , Pronóstico , Regulación hacia Arriba/genética , Tirosina Quinasa 3 Similar a fms/genética
9.
Nucleic Acids Res ; 45(14): 8269-8281, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28531272

RESUMEN

TET1 oxidizes methylated cytosine into 5-hydroxymethylcytosine (5hmC), resulting in regulation of DNA methylation and gene expression. Full length TET1 (TET1FL) has a CXXC domain that binds to unmethylated CpG islands (CGIs). This CXXC domain allows TET1 to protect CGIs from aberrant methylation, but it also limits its ability to regulate genes outside of CGIs. Here, we report a novel isoform of TET1 (TET1ALT) that has a unique transcription start site from an alternate promoter in intron 2, yielding a protein with a unique translation start site. Importantly, TET1ALT lacks the CXXC domain but retains the catalytic domain. TET1ALT is repressed in embryonic stem cells (ESCs) but becomes activated in embryonic and adult tissues while TET1FL is expressed in ESCs, but repressed in adult tissues. Overexpression of TET1ALT shows production of 5hmC with distinct (and weaker) effects on DNA methylation or gene expression when compared to TET1FL. TET1ALT is aberrantly activated in multiple cancer types including breast, uterine and glioblastoma, and TET1 activation is associated with a worse overall survival in breast, uterine and ovarian cancers. Our data suggest that the predominantly activated isoform of TET1 in cancer cells does not protect from CGI methylation and likely mediates dynamic site-specific demethylation outside of CGIs.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Oxigenasas de Función Mixta/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas/genética , Animales , Sitios de Unión/genética , Western Blotting , Línea Celular , Línea Celular Tumoral , Islas de CpG/genética , Metilación de ADN , Células Madre Embrionarias/metabolismo , Células HEK293 , Células HeLa , Humanos , Células K562 , Células MCF-7 , Masculino , Ratones Endogámicos C57BL , Oxigenasas de Función Mixta/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...