Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 512(7515): 445-8, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25164755

RESUMEN

The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.


Asunto(s)
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Transcriptoma/genética , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Cromatina/genética , Análisis por Conglomerados , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Histonas/metabolismo , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Modelos Genéticos , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Pupa/genética , Pupa/crecimiento & desarrollo , ARN no Traducido/genética , Análisis de Secuencia de ARN
2.
Nature ; 512(7515): 453-6, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25164757

RESUMEN

Despite the large evolutionary distances between metazoan species, they can show remarkable commonalities in their biology, and this has helped to establish fly and worm as model organisms for human biology. Although studies of individual elements and factors have explored similarities in gene regulation, a large-scale comparative analysis of basic principles of transcriptional regulatory features is lacking. Here we map the genome-wide binding locations of 165 human, 93 worm and 52 fly transcription regulatory factors, generating a total of 1,019 data sets from diverse cell types, developmental stages, or conditions in the three species, of which 498 (48.9%) are presented here for the first time. We find that structural properties of regulatory networks are remarkably conserved and that orthologous regulatory factor families recognize similar binding motifs in vivo and show some similar co-associations. Our results suggest that gene-regulatory properties previously observed for individual factors are general principles of metazoan regulation that are remarkably well-preserved despite extensive functional divergence of individual network connections. The comparative maps of regulatory circuitry provided here will drive an improved understanding of the regulatory underpinnings of model organism biology and how these relate to human biology, development and disease.


Asunto(s)
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Evolución Molecular , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/crecimiento & desarrollo , Inmunoprecipitación de Cromatina , Secuencia Conservada/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Genoma/genética , Humanos , Anotación de Secuencia Molecular , Motivos de Nucleótidos/genética , Especificidad de Órganos/genética , Factores de Transcripción/genética
3.
Nature ; 512(7515): 449-52, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25164756

RESUMEN

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Animales , Línea Celular , Centrómero/genética , Centrómero/metabolismo , Cromatina/química , Ensamble y Desensamble de Cromatina/genética , Replicación del ADN/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Anotación de Secuencia Molecular , Lámina Nuclear/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Especificidad de la Especie
4.
Science ; 330(6012): 1775-87, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-21177976

RESUMEN

We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.


Asunto(s)
Caenorhabditis elegans/genética , Cromosomas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma de los Helmintos , Anotación de Secuencia Molecular , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestructura , Cromosomas/genética , Cromosomas/metabolismo , Cromosomas/ultraestructura , Biología Computacional/métodos , Secuencia Conservada , Evolución Molecular , Redes Reguladoras de Genes , Genes de Helminto , Genómica/métodos , Histonas/metabolismo , Modelos Genéticos , ARN de Helminto/genética , ARN de Helminto/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Genome Res ; 19(12): 2324-33, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19767417

RESUMEN

Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding sequence for 92% of human and 89% of mouse genes with curated RefSeq (NM-accession) transcripts, and for 97% of human and 96% of mouse genes with curated RefSeq transcripts that have one or more PubMed publications, in addition to clones for more than 6300 rat genes. These high-quality MGC clones and their sequences are accessible without restriction to researchers worldwide.


Asunto(s)
Clonación Molecular/métodos , Biología Computacional/métodos , ADN Complementario/genética , Biblioteca de Genes , Genes/genética , Mamíferos/genética , Animales , ADN/biosíntesis , Humanos , Ratones , National Institutes of Health (U.S.) , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estados Unidos
6.
Genesis ; 38(4): 166-75, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15083517

RESUMEN

We describe a new RNA binding protein from Xenopus we have named ePABP2 (embryonic poly(A) binding protein type II). Based on amino acid similarity, ePABP2 is closely related to the ubiquitously expressed nuclear PABP2 protein that directs the elongation of mRNA poly(A) tails during pre-mRNA processing. However, in contrast to known PABP2 proteins, Xenopus ePABP2 is a cytoplasmic protein that is predominantly expressed during the early stages of Xenopus development and in adult ovarian tissue. Biochemical experiments indicate ePABP2 binds poly(A) with specificity and that this binding requires the RRM domain. Mouse and human ePABP2 proteins were also identified and mouse ePABP2 expression is also confined to the earliest stages of mouse development and adult ovarian tissue. We propose that Xenopus ePABP2 is the founding member of a new class of poly(A) binding proteins expressed in vertebrate embryos. Possible roles for this protein in regulating mRNA function in early vertebrate development are discussed.


Asunto(s)
Citoplasma/metabolismo , Regulación del Desarrollo de la Expresión Génica , Poli A/metabolismo , Proteínas de Unión al ARN/clasificación , Proteínas de Unión al ARN/metabolismo , Xenopus/embriología , Xenopus/genética , Envejecimiento/fisiología , Secuencia de Aminoácidos , Animales , Citoplasma/genética , Femenino , Humanos , Ratones , Datos de Secuencia Molecular , Oocitos/citología , Oocitos/metabolismo , Oogénesis/genética , Ovario/citología , Ovario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Proteínas de Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...