Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 11(8)2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344917

RESUMEN

Understanding of colony specific properties of cyanobacteria in the natural environment has been challenging because sampling methods disaggregate colonies and there are often delays before they can be isolated and preserved. Microcystis is a ubiquitous cyanobacteria that forms large colonies in situ and often produces microcystins, a potent hepatotoxin. In the present study a new cryo-sampling technique was used to collect intact Microcystis colonies in situ by embedding them in a sheet of ice. Thirty-two of these Microcystis colonies were investigated with image analysis, liquid chromatography-mass spectrometry, quantitative polymerase chain reaction and high-throughput sequencing to assess their volume, microcystin quota and internal transcribed spacer (ITS) genotype diversity. Microcystin quotas were positively correlated to colony volume (R2 = 0.32; p = 0.004). Individual colonies had low Microcystis ITS genotype diversity and one ITS operational taxonomic unit predominated in all samples. This study demonstrates the utility of the cryo-sampling method to enhance the understanding of colony-specific properties of cyanobacteria with higher precision than previously possible.


Asunto(s)
Microcistinas/análisis , Microcystis/aislamiento & purificación , Biodiversidad , Cromatografía Liquida , Secuenciación de Nucleótidos de Alto Rendimiento , Lagos/microbiología , Microcystis/genética , Nueva Zelanda , Espectrometría de Masas en Tándem
2.
Environ Manage ; 57(3): 711-21, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26467674

RESUMEN

Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.


Asunto(s)
Biodiversidad , Minas de Carbón , Monitoreo del Ambiente , Animales , Ecosistema , Peces , Predicción , Invertebrados , Nueva Zelanda , Plantas , Dinámica Poblacional , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...