Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(6): 1165-1183, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749429

RESUMEN

The pathological huntingtin (HTT) trinucleotide repeat underlying Huntington disease (HD) continues to expand throughout life. Repeat length correlates both with earlier age at onset (AaO) and faster progression, making slowing its expansion an attractive therapeutic approach. Genome-wide association studies have identified candidate variants associated with altered AaO and progression, with many found in DNA mismatch repair (MMR)-associated genes. We examine whether lowering expression of these genes affects the rate of repeat expansion in human ex vivo models using HD iPSCs and HD iPSC-derived striatal medium spiny neuron-enriched cultures. We have generated a stable CRISPR interference HD iPSC line in which we can specifically and efficiently lower gene expression from a donor carrying over 125 CAG repeats. Lowering expression of each member of the MMR complexes MutS (MSH2, MSH3, and MSH6), MutL (MLH1, PMS1, PMS2, and MLH3), and LIG1 resulted in characteristic MMR deficiencies. Reduced MSH2, MSH3, and MLH1 slowed repeat expansion to the largest degree, while lowering either PMS1, PMS2, or MLH3 slowed it to a lesser degree. These effects were recapitulated in iPSC-derived striatal cultures where MutL factor expression was lowered. CRISPRi-mediated lowering of key MMR factor expression to levels feasibly achievable by current therapeutic approaches was able to effectively slow the expansion of the HTT CAG tract. We highlight members of the MutL family as potential targets to slow pathogenic repeat expansion with the aim to delay onset and progression of HD and potentially other repeat expansion disorders exhibiting somatic instability.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteína Huntingtina , Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , Expansión de Repetición de Trinucleótido , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Células Madre Pluripotentes Inducidas/metabolismo , Expansión de Repetición de Trinucleótido/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Genes Modificadores , Proteína 3 Homóloga de MutS/genética , Proteína 3 Homóloga de MutS/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Sistemas CRISPR-Cas , Estudio de Asociación del Genoma Completo
2.
Cell Rep ; 36(9): 109649, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469738

RESUMEN

CAG repeat expansion in the HTT gene drives Huntington's disease (HD) pathogenesis and is modulated by DNA damage repair pathways. In this context, the interaction between FAN1, a DNA-structure-specific nuclease, and MLH1, member of the DNA mismatch repair pathway (MMR), is not defined. Here, we identify a highly conserved SPYF motif at the N terminus of FAN1 that binds to MLH1. Our data support a model where FAN1 has two distinct functions to stabilize CAG repeats. On one hand, it binds MLH1 to restrict its recruitment by MSH3, thus inhibiting the assembly of a functional MMR complex that would otherwise promote CAG repeat expansion. On the other hand, it promotes accurate repair via its nuclease activity. These data highlight a potential avenue for HD therapeutics in attenuating somatic expansion.


Asunto(s)
Encéfalo/enzimología , Daño del ADN , Reparación de la Incompatibilidad de ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/enzimología , Enzimas Multifuncionales/metabolismo , Homólogo 1 de la Proteína MutL/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Unión Competitiva , Encéfalo/patología , Línea Celular Tumoral , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Ratones , Enzimas Multifuncionales/genética , Homólogo 1 de la Proteína MutL/genética , Proteína 3 Homóloga de MutS/genética , Proteína 3 Homóloga de MutS/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
3.
Hum Mol Genet ; 28(4): 650-661, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30358836

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disease caused by an expanded CAG repeat in the huntingtin (HTT) gene. CAG repeat length explains around half of the variation in age at onset (AAO) but genetic variation elsewhere in the genome accounts for a significant proportion of the remainder. Genome-wide association studies have identified a bidirectional signal on chromosome 15, likely underlain by FANCD2- and FANCI-associated nuclease 1 (FAN1), a nuclease involved in DNA interstrand cross link repair. Here we show that increased FAN1 expression is significantly associated with delayed AAO and slower progression of HD, suggesting FAN1 is protective in the context of an expanded HTT CAG repeat. FAN1 overexpression in human cells reduces CAG repeat expansion in exogenously expressed mutant HTT exon 1, and in patient-derived stem cells and differentiated medium spiny neurons, FAN1 knockdown increases CAG repeat expansion. The stabilizing effects are FAN1 concentration and CAG repeat length-dependent. We show that FAN1 binds to the expanded HTT CAG repeat DNA and its nuclease activity is not required for protection against CAG repeat expansion. These data shed new mechanistic insights into how the genetic modifiers of HD act to alter disease progression and show that FAN1 affects somatic expansion of the CAG repeat through a nuclease-independent mechanism. This provides new avenues for therapeutic interventions in HD and potentially other triplet repeat disorders.


Asunto(s)
Exodesoxirribonucleasas/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Transcriptoma/genética , Edad de Inicio , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Endodesoxirribonucleasas , Exones/genética , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Enfermedad de Huntington/patología , Ratones , Enzimas Multifuncionales , Neuronas/metabolismo , Neuronas/patología , Expansión de Repetición de Trinucleótido/genética
4.
Mov Disord ; 25(13): 2176-82, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20669319

RESUMEN

The purpose of this study was to characterise a novel family with very slowly progressive pure spinocerebellar ataxia (SCA) caused by a deletion in the inositol 1,4,5-triphosphate receptor 1 (ITPR1) gene on chromosome 3. This is a detailed clinical, genetic, and radiological description of the genotype. Deletions in ITPR1 have been shown to cause SCA15/SCA16 in six families to date. A further Japanese family has been identified with an ITPR1 point mutation. The exact prevalence is as yet unknown, but is probably higher than previously thought. The clinical phenotype of the family is described, and videotaped clinical examinations are presented. Serial brain magnetic resonance imaging studies were carried out on one affected individual, and genetic analysis was performed on several family members. Protein analysis confirmed the ITPR1 deletion. Affected subjects display a remarkably slow, almost pure cerebellar syndrome. Serial magnetic resonance imaging shows moderate cerebellar atrophy with mild inferior parietal and temporal cortical volume loss. Genetic analysis shows a deletion of 346,487 bp in ITPR1 (the second largest ITPR1 deletion reported to date), suggesting SCA15 is due to a loss of ITPR1 function. Western blotting of lymphoblastoid cell line protein confirms reduced ITPR1 protein levels. SCA15 is a slowly or nonprogressive pure cerebellar ataxia, which appears to be caused by a loss of ITPR1 function and a reduction in the translated protein. Patients with nonprogressive or slowly progressive ataxia should be screened for ITPR1 defects.


Asunto(s)
Eliminación de Gen , Receptores de Inositol 1,4,5-Trifosfato/genética , Polimorfismo de Nucleótido Simple/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Adulto , Salud de la Familia , Femenino , Pruebas Genéticas , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Ataxias Espinocerebelosas/clasificación
5.
J Cell Sci ; 122(Pt 14): 2424-35, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19549690

RESUMEN

MAP1B is a developmentally regulated microtubule-associated phosphoprotein that regulates microtubule dynamics in growing axons and growth cones. We used mass spectrometry to map 28 phosphorylation sites on MAP1B, and selected for further study a putative primed GSK3 beta site and compared it with two nonprimed GSK3 beta sites that we had previously characterised. We raised a panel of phosphospecific antibodies to these sites on MAP1B and used it to assess the distribution of phosphorylated MAP1B in the developing nervous system. This showed that the nonprimed sites are restricted to growing axons, whereas the primed sites are also expressed in the neuronal cell body. To identify kinases phosphorylating MAP1B, we added kinase inhibitors to cultured embryonic cortical neurons and monitored MAP1B phosphorylation with our panel of phosphospecific antibodies. These experiments identified dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK1A) as the kinase that primes sites of GSK3 beta phosphorylation in MAP1B, and we confirmed this by knocking down DYRK1A in cultured embryonic cortical neurons by using shRNA. DYRK1A knockdown compromised neuritogenesis and was associated with alterations in microtubule stability. These experiments demonstrate that MAP1B has DYRK1A-primed and nonprimed GSK3 beta sites that are involved in the regulation of microtubule stability in growing axons.


Asunto(s)
Axones/enzimología , Corteza Cerebral/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factores de Edad , Animales , Axones/efectos de los fármacos , Células COS , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/embriología , Chlorocebus aethiops , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Espectrometría de Masas , Ratones , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/efectos de los fármacos , Mutación , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Interferencia de ARN , Ratas , Proteínas Recombinantes de Fusión , Serina , Médula Espinal/embriología , Médula Espinal/enzimología , Treonina , Transfección , Quinasas DyrK
6.
Cerebellum ; 7(2): 106-14, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18418661

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a late onset neurodegenerative disease characterized by cerebellar ataxia with variable degrees of ophthalmoplegia, pyramidal and extrapyramidal signs, and peripheral neuropathy. SCA1 is caused by the toxic effects triggered by an expanded polyglutamine (polyQ) within the protein ataxin 1 (Atxn1) resulting in variable degrees of neurodegeneration in the cerebellum, brainstem, and spinocerebellar tracts. The toxic gain-of-function mechanisms by which the polyQ expansion induces neuronal cell death are not fully understood and no effective therapies are yet available. Alterations in transcriptional regulation, calcium homeostasis, glutamate signaling/excitotoxicity, and impaired protein degradation are few recurrent events in the pathogenesis in SCA1. However, elucidating the molecular routes regulated by ataxin 1 is leading to the discovery of new pathways that are implicated in SCA1. This suggests that dominant-negative effects exerted by the mutant protein, rather than just gain-of-function mechanisms, might be also implicated in SCA1 pathogenesis. The challenge now is to determine how these responses account for the clinical manifestation of the disease symptoms and, ultimately, how this knowledge can be translated into the development of therapeutic strategies. Herein, we review the phenotype and most recent advances in our understanding of the physiopathological mechanisms of neurodegeneration in SCA1.


Asunto(s)
Ataxias Espinocerebelosas/genética , Edad de Inicio , Anciano , Ataxina-1 , Ataxinas , Niño , Trastornos del Conocimiento/genética , Humanos , Modelos Moleculares , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ácido Poliglutámico/genética , Conformación Proteica , Ataxias Espinocerebelosas/clasificación , Ataxias Espinocerebelosas/fisiopatología , Repeticiones de Trinucleótidos/genética
7.
Hum Mol Genet ; 16(17): 2122-34, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17599952

RESUMEN

Ataxin 1 (Atxn1) is a protein of unknown function associated with spinocerebellar ataxia type 1 (SCA1), a neurodegenerative disease of late onset with variable degrees of cerebellar ataxia, ophthalmoplegia and neuropathy. SCA1 is caused by the toxic effects triggered by an expanded polyglutamine (polyQ) within Atxn1 resulting in neurodegeneration in the cerebellum, brain stem and spinocerebellar tracts. To gain insights into Atxn1 function, we have analysed the cerebellar gene expression profiles by microarray analysis in Atxn1-null mice, and identified alterations in expression of genes regulated by Sp1-dependent transcription, including the dopamine receptor D2 (Drd2), retinoic acid/thyroid hormone and Wnt-signalling. Interestingly, Drd2 expression levels are reduced in both Atxn1-null and transgenic mice expressing a pathogenic human Atxn1 with an expanded polyglutamine in cerebellar Purkinje cells. Our co-transfection experiments in human neuroblastoma SH-SY5Y cells and luciferase assays provide evidence for transcriptional regulation of Drd2 by Atxn1 and its AXH module. We show that Atxn1 occupies at the Drd2 promoter in vivo, and interacts and functions synergistically with the zinc-finger transcription factor Sp1 to co-regulate Drd2 expression. The interaction and transcriptional effects are mediated by the AXH domain within Atxn1 and are abrogated by the expanded polyQ within Atxn1. Therefore, this study identifies novel molecular targets that are regulated by Atxn1 which might contribute to the motor deficits in SCA1, and provides new insights into the mechanisms by which Atxn1 co-regulates transcription.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Receptores de Dopamina D2/genética , Animales , Ataxina-1 , Ataxinas , Cerebelo/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Receptores de Dopamina D2/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Transcripción Genética , Transfección , Células Tumorales Cultivadas
8.
Brain ; 129(Pt 6): 1357-70, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16613893

RESUMEN

The autosomal dominant spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases, clinically and genetically heterogeneous, characterized by loss of balance and motor coordination due to dysfunction of the cerebellum and its afferent and efferent connections. Despite a well-described clinical and pathological phenotype, the molecular and cellular events that underlie neurodegeneration are still poorly understood. Compelling evidence points to major aetiological roles for interference with transcriptional regulation, protein aggregation and clearance, the ubiquitin-proteasome system and alterations of calcium homeostasis in the neuronal loss observed during the neurodegenerative process. But novel molecular routes that might be disrupted during disease progression are also being identified. These pathways could act independently or, more likely, interact and enhance each other, triggering the accumulation of cellular damage that eventually leads to dysfunction and, ultimately, the demise of neurons through a series of multiple events. This suggests that simultaneous targeting of several pathways might be therapeutically necessary to prevent neurodegeneration and preserve neuronal function. Understanding how dysregulation of these pathways mediates disease progression is leading to the establishment of effective therapeutic strategies in vivo, which may prove beneficial in the treatment of SCAs. Herein, we review the latest evidence for the proposed molecular processes to the pathogenesis of dominantly inherited spinocerebellar ataxias and the current therapeutic strategies.


Asunto(s)
Ataxias Espinocerebelosas/genética , Animales , Apoptosis , Calcio/metabolismo , Homeostasis/genética , Humanos , Mitocondrias/fisiología , Péptidos/genética , Péptidos/fisiología , Transducción de Señal/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/terapia
9.
Mol Cell Neurosci ; 28(3): 524-34, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15737742

RESUMEN

In pheochromocytoma 12 (PC12) cells and sympathetic neurons, nerve growth factor (NGF) engagement with the tropomyosin-related tyrosine kinase (TrkA) receptor activates the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta), enabling it to phosphorylate the microtubule-associated protein 1B (MAP1B). GSK3beta phosphorylation of MAP1B acts as a molecular switch to regulate microtubule dynamics in growing axons, and hence the rate of axon growth. An important question relates to the identification of the upstream pathway linking the activation of GSK3beta with TrkA engagement. TrkA can utilise a number of intracellular signalling pathways, including the mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol-3 kinase (PI3K) pathway. We now show, using pharmacological inhibitor studies of PC12 cells and sympathetic neurons in culture and in vitro kinase and activation assays, that the MAPK pathway, and not the PI3K pathway, links NGF engagement with the TrkA receptor to GSK3beta activation in PC12 cells and sympathetic neurons. We also show that activated GSK3beta is a small fraction of the total GSK3beta present in developing brain and that it is not part of a multiprotein complex. Thus, NGF drives increased neurite growth rates partly by coupling the MAPK pathway to the activation of GSK3beta and thereby phosphorylation of MAP1B.


Asunto(s)
Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Glucógeno Sintasa Quinasa 3/metabolismo , Conos de Crecimiento/enzimología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3 beta , Conos de Crecimiento/ultraestructura , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Células PC12 , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Receptor trkA/metabolismo , Ganglio Cervical Superior
10.
J Cell Sci ; 118(Pt 5): 993-1005, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15731007

RESUMEN

Recent experiments show that the microtubule-associated protein (MAP) 1B is a major phosphorylation substrate for the serine/threonine kinase glycogen synthase kinase-3beta (GSK-3beta) in differentiating neurons. GSK-3beta phosphorylation of MAP1B appears to act as a molecular switch regulating the control that MAP1B exerts on microtubule dynamics in growing axons and growth cones. Maintaining a population of dynamically unstable microtubules in growth cones is important for axon growth and growth cone pathfinding. We have mapped two GSK-3beta phosphorylation sites on mouse MAP1B to Ser1260 and Thr1265 using site-directed point mutagenesis of recombinant MAP1B proteins, in vitro kinase assays and phospho-specific antibodies. We raised phospho-specific polyclonal antibodies to these two sites and used them to show that MAP1B is phosphorylated by GSK-3beta at Ser1260 and Thr1265 in vivo. We also showed that in the developing nervous system of rat embryos, the expression of GSK-3beta phosphorylated MAP1B is spatially restricted to growing axons, in a gradient that is highest distally, despite the expression of MAP1B and GSK-3beta throughout the entire neuron. This suggests that there is a mechanism that spatially regulates the GSK-3beta phosphorylation of MAP1B in differentiating neurons. Heterologous cell transfection experiments with full-length MAP1B, in which either phosphorylation site was separately mutated to a valine or, in a double mutant, in which both sites were mutated, showed that these GSK-3beta phosphorylation sites contribute to the regulation of microtubule dynamics by MAP1B.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Serina/química , Treonina/química , Animales , Axones/metabolismo , Sitios de Unión , Western Blotting , Células COS , Proliferación Celular , Corteza Cerebral/metabolismo , ADN Complementario/metabolismo , Electroforesis en Gel de Poliacrilamida , Embrión de Mamíferos/metabolismo , Epítopos/química , Regulación del Desarrollo de la Expresión Génica , Glutatión Transferasa/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Immunoblotting , Ratones , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Mutagénesis Sitio-Dirigida , Mutación , Neuronas/metabolismo , Oligonucleótidos/química , Péptidos/química , Fosforilación , Plásmidos/metabolismo , Mutación Puntual , Unión Proteica , Ratas , Ratas Wistar , Proteínas Recombinantes/química , Factores de Tiempo , Transfección , Valina/química
11.
J Neurochem ; 87(4): 935-46, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14622124

RESUMEN

We have recently shown that nerve growth factor (NGF) induces the phosphorylation of the microtubule-associated protein 1B (MAP1B) by activating the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta) in a spatio-temporal pattern in PC12 cells that correlates tightly with neurite growth. PC12 cells express two types of membrane receptor for NGF: TrkA receptors and p75NTR receptors, and it was not clear from our studies which receptor was responsible. We show here that brain-derived neurotrophic factor, which activates p75NTR but not TrkA receptors, does not stimulate GSK3beta phosphorylation of MAP1B in PC12 cells. Similarly, NGF fails to activate GSK3beta phosphorylation of MAP1B in PC12 cells that lack TrkA receptors but express p75NTR receptors (PC12 nnr). Chick ciliary ganglion neurons in culture lack TrkA receptors but express p75NTR and also fail to show NGF-dependent GSK3beta phosphorylation of MAP1B, whereas in rat superior cervical ganglion neurons in culture, NGF activation of TrkA receptors elicits GSK3beta phosphorylation of MAP1B. Finally, inhibition of TrkA receptor tyrosine kinase activity in PC12 cells and superior cervical ganglion neurons with K252a potently and dose-dependently inhibits neurite elongation while concomitantly blocking GSK3beta phosphorylation of MAP1B. These results suggest that the activation of GSK3beta by NGF is mediated through the TrkA tyrosine kinase receptor and not through p75NTR receptors.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Factor de Crecimiento Nervioso/farmacología , Neuronas/metabolismo , Receptor trkA/metabolismo , Animales , Axones/efectos de los fármacos , Carbazoles/farmacología , Células Cultivadas , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta , Alcaloides Indólicos , Neuritas/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Células PC12 , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Receptor de Factor de Crecimiento Nervioso , Receptor trkA/antagonistas & inhibidores , Receptores de Factor de Crecimiento Nervioso/metabolismo
12.
Mol Cell Neurosci ; 20(2): 257-70, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12093158

RESUMEN

Valproate (VPA) and lithium have been used for many years in the treatment of manic depression. However, their mechanisms of action remain poorly understood. Recent studies suggest that lithium and VPA inhibit GSK-3beta, a serine/threonine kinase involved in the insulin and WNT signaling pathways. Inhibition of GSK-3beta by high concentrations of lithium has been shown to mimic WNT-7a signaling by inducing axonal remodeling and clustering of synapsin I in developing neurons. Here we have compared the effect of therapeutic concentrations of lithium and VPA during neuronal maturation. VPA and, to a lesser extent, lithium induce clustering of synapsin I. In addition, lithium and VPA induce similar changes in the morphology of axons by increasing growth cone size, spreading, and branching. More importantly, both mood stabilizers decrease the level of MAP-1B-P, a GSK-3beta-phosphorylated form of MAP-1B in developing neurons, suggesting that therapeutic concentrations of these mood stabilizers inhibit GSK-3beta. In vitro kinase assays show that therapeutic concentrations of VPA do not inhibit GSK-3beta but that therapeutic concentrations of lithium partially inhibit GSK-3beta activity. Our results support the idea that both mood stabilizers inhibit GSK-3beta in developing neurons through different pathways. Lithium directly inhibits GSK-3beta in contrast to VPA, which inhibits GSK-3beta indirectly by an as-yet-unknown pathway. These findings may have important implications for the development of new strategies to treat bipolar disorders.


Asunto(s)
Antimaníacos/farmacología , Axones/efectos de los fármacos , Encéfalo/efectos de los fármacos , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Sinapsinas/efectos de los fármacos , Ácido Valproico/farmacología , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/ultraestructura , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Interacciones Farmacológicas/fisiología , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/metabolismo , Litio/farmacología , Ratones , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/metabolismo , Fibras Nerviosas/ultraestructura , Plasticidad Neuronal/fisiología , Proteínas Proto-Oncogénicas/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sinapsinas/metabolismo , Proteínas Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA