Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Expert Rev Anti Infect Ther ; 22(1-3): 87-101, 2024.
Article En | MEDLINE | ID: mdl-38180805

INTRODUCTION: Staphylococcus aureus, a human commensal, is also one of the most common and serious pathogens for humans. In recent years, its capacity to survive and replicate in phagocytic and non-phagocytic cells has been largely demonstrated. In these intracellular niches, bacteria are shielded from the immune response and antibiotics, turning host cells into long-term infectious reservoirs. Moreover, neutrophils carry intracellular bacteria in the bloodstream, leading to systemic spreading of the disease. Despite the serious threat posed by intracellular S. aureus to human health, the molecular mechanisms behind its intracellular survival and subsequent antibiotic treatment failure remain elusive. AREA COVERED: We give an overview of the killing mechanisms of phagocytes and of the impressive arsenal of virulence factors, toxins and stress responses deployed by S. aureus as a response. We then discuss the different barriers to antibiotic activity in this intracellular niche and finally describe innovative strategies to target intracellular persisting reservoirs. EXPERT OPINION: Intracellular niches represent a challenge in terms of diagnostic and treatment. Further research using ad-hoc in-vivo models and single cell approaches are needed to better understand the molecular mechanisms underlying intracellular survival and tolerance to antibiotics in order to identify strategies to eliminate these persistent bacteria.


Anti-Infective Agents , Staphylococcal Infections , Humans , Staphylococcus aureus , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Neutrophils , Anti-Bacterial Agents/pharmacology
2.
Structure ; 30(11): 1479-1493.e9, 2022 11 03.
Article En | MEDLINE | ID: mdl-36240773

Antimicrobial resistance threatens the eradication of infectious diseases and impairs the efficacy of available therapeutics. The bacterial SOS pathway is a conserved response triggered by genotoxic stresses and represents one of the principal mechanisms that lead to resistance. The RecA recombinase acts as a DNA-damage sensor inducing the autoproteolysis of the transcriptional repressor LexA, thereby derepressing SOS genes that mediate DNA repair, survival to chemotherapy, and hypermutation. The inhibition of such pathway represents a promising strategy for delaying the evolution of antimicrobial resistance. We report the identification, via llama immunization and phage display, of nanobodies that bind LexA with sub-micromolar affinity and block autoproteolysis, repressing SOS response in Escherichia coli. Biophysical characterization of nanobody-LexA complexes revealed that they act by trapping LexA in an inactive conformation and interfering with RecA engagement. Our studies pave the way to the development of new-generation antibiotic adjuvants for the treatment of bacterial infections.


SOS Response, Genetics , Single-Domain Antibodies , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology
3.
Nat Rev Microbiol ; 20(6): 335-350, 2022 06.
Article En | MEDLINE | ID: mdl-34975154

Toxin-antitoxin systems are widespread in bacterial genomes. They are usually composed of two elements: a toxin that inhibits an essential cellular process and an antitoxin that counteracts its cognate toxin. In the past decade, a number of new toxin-antitoxin systems have been described, bringing new growth inhibition mechanisms to light as well as novel modes of antitoxicity. However, recent advances in the field profoundly questioned the role of these systems in bacterial physiology, stress response and antimicrobial persistence. This shifted the paradigm of the functions of toxin-antitoxin systems to roles related to interactions between hosts and their mobile genetic elements, such as viral defence or plasmid stability. In this Review, we summarize the recent progress in understanding the biology and evolution of these small genetic elements, and discuss how genomic conflicts could shape the diversification of toxin-antitoxin systems.


Antitoxins , Toxin-Antitoxin Systems , Antitoxins/genetics , Bacteria/genetics , Bacterial Proteins/genetics , Genome, Bacterial , Genomics , Toxin-Antitoxin Systems/genetics
4.
mBio ; 12(6): e0294721, 2021 12 21.
Article En | MEDLINE | ID: mdl-34844426

Type II toxin-antitoxin (TA) systems are classically composed of two genes that encode a toxic protein and a cognate antitoxin protein. Both genes are organized in an operon whose expression is autoregulated at the level of transcription by the antitoxin-toxin complex, which binds operator DNA through the antitoxin's DNA-binding domain. Here, we investigated the transcriptional regulation of a particular TA system located in the immunity region of a cryptic lambdoid prophage in the Escherichia coli O157:H7 EDL933 strain. This noncanonical paaA2-parE2 TA operon contains a third gene, paaR2, that encodes a transcriptional regulator that was previously shown to control expression of the TA. We provide direct evidence that the PaaR2 is a transcriptional regulator which shares functional similarities to the lambda CI repressor. Expression of the paaA2-parE2 TA operon is regulated by two other transcriptional regulators, YdaS and YdaT, encoded within the same region. We argue that YdaS and YdaT are analogous to lambda Cro and CII and that they do not constitute a TA system, as previously debated. We show that PaaR2 primarily represses the expression of YdaS and YdaT, which in turn controls the expression of paaR2-paaA2-parE2 operon. Overall, our results show that the paaA2-parE2 TA is embedded in an intricate lambdoid prophage-like regulation network. Using single-cell analysis, we observed that the entire locus exhibits bistability, which generates diversity of expression in the population. Moreover, we confirmed that paaA2-parE2 is addictive and propose that it could limit genomic rearrangements within the immunity region of the CP-933P cryptic prophage. IMPORTANCE Transcriptional regulation of bacterial toxin-antitoxin (TA) systems allows compensation of toxin and antitoxin proteins to maintain a neutral state and avoid cell intoxication unless TA genes are lost. Such models have been primarily studied in plasmids, but TAs are equally present in other mobile genetic elements, such as transposons and prophages. Here, we demonstrate that the expression of a TA system located in a lambdoid cryptic prophage is transcriptionally coupled to the prophage immunity region and relies on phage transcription factors. Moreover, competition between transcription factors results in bistable expression, which generates cell-to-cell heterogeneity in the population, but without, however, leading to any detectable phenotype, even in cells expressing the TA system. We show that despite the lack of protein sequence similarity, this locus retains major lambda prophage regulation features.


Coliphages/genetics , Escherichia coli O157/virology , Prophages/genetics , Toxin-Antitoxin Systems , Viral Proteins/genetics , Base Sequence , Coliphages/metabolism , Gene Expression Regulation, Viral , Genome, Viral , Operon , Plasmids/genetics , Plasmids/metabolism , Prophages/metabolism , Viral Proteins/metabolism
5.
Methods Mol Biol ; 2357: 95-106, 2021.
Article En | MEDLINE | ID: mdl-34590254

Persister cells are present at low frequency in isogenic populations. Moreover, they are only distinguishable from the bulk at the recovery time, after the antibiotic treatment. Therefore, time-lapse microscopy is the gold-standard method to investigate this phenomenon. Here, we describe an exhaustive procedure for acquiring single-cell data which is particularly suitable for persister cell analysis but could be applied to any other fields of research involving single-cell time-lapse microscopy. In addition, we discuss the challenges and critical aspects of the procedure with respect to the generation of robust data.


Anti-Bacterial Agents/pharmacology , Data Analysis , Escherichia coli
6.
J Bacteriol ; 202(7)2020 03 11.
Article En | MEDLINE | ID: mdl-31932311

Type II toxin-antitoxin (TA) systems are small genetic elements composed of a toxic protein and its cognate antitoxin protein, the latter counteracting the toxicity of the former. While TA systems were initially discovered on plasmids, functioning as addiction modules through a phenomenon called postsegregational killing, they were later shown to be massively present in bacterial chromosomes, often in association with mobile genetic elements. Extensive research has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules and to characterize the conditions leading to their activation. The diversity of their proposed roles, ranging from genomic stabilization and abortive phage infection to stress modulation and antibiotic persistence, in conjunction with the poor understanding of TA system regulation, resulted in the generation of simplistic models, often refuted by contradictory results. This review provides an epistemological and critical retrospective on TA modules and highlights fundamental questions concerning their roles and regulations that still remain unanswered.


Antitoxins/genetics , Antitoxins/immunology , Bacterial Toxins/genetics , Bacterial Toxins/immunology , Biological Evolution , Toxin-Antitoxin Systems , Genetic Association Studies , Genome, Bacterial , Phenotype , Toxin-Antitoxin Systems/genetics , Toxin-Antitoxin Systems/immunology
7.
F1000Res ; 82019.
Article En | MEDLINE | ID: mdl-31737252

Antibiotic chemotherapy effectively cures many infections caused by susceptible bacterial pathogens. However, in some cases, even extended treatment duration does not completely eradicate the pathogenic bacteria from host tissues. A common model for underlying mechanisms assumes the stochastic formation of bacterial persisters similar to observations in laboratory cultures. However, alternative explanations related to the complexity of infected host tissues could also be relevant. We discuss several of these aspects and emphasize the need for integrated analysis as a basis for new control strategies.


Anti-Bacterial Agents , Bacteria , Bacterial Infections , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy
8.
Sci Adv ; 5(6): eaav9462, 2019 06.
Article En | MEDLINE | ID: mdl-31223653

Bacterial persistence refers to the capacity of small subpopulations within clonal populations to tolerate antibiotics. Persisters are thought to originate from dormant cells in which antibiotic targets are less active and cannot be corrupted. Here, we report that in exponentially growing cultures, ofloxacin persisters originate from metabolically active cells: These cells are dividing before the addition of ofloxacin and do endure DNA damages during the treatment, similar to their nonpersister siblings. We observed that growth rate, DNA content, and SOS induction vary among persisters, as in the bulk of the population and therefore do not constitute predictive markers for persistence. Persister cells typically form long polynucleoid filaments and reach maximum SOS induction after removal of ofloxacin. Eventually, cell division resumes, giving rise to a new population. Our findings highlight the heterogeneity of persister cells and therefore the need to analyze these low-frequency phenotypic variants on a case-by-case basis at the single-cell level.


Escherichia coli/drug effects , Ofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Cell Division/drug effects , DNA Damage/drug effects , Escherichia coli/genetics , Microbial Viability/drug effects , Single-Cell Analysis/methods
9.
Microb Cell Fact ; 18(1): 26, 2019 Feb 02.
Article En | MEDLINE | ID: mdl-30710996

BACKGROUND: Escherichia coli W3110 and a group of six isogenic derivatives, each displaying distinct specific rates of glucose consumption were characterized to determine levels of GFP production and population heterogeneity. These strains have single or combinatory deletions in genes encoding phosphoenolpyruvate:sugar phosphotransferase system (PTS) permeases as PtsG and ManX, as well as common components EI, Hpr protein and EIIA, also the non-PTS Mgl galactose/glucose ABC transporter. They have been transformed for expressing GFP based on a lac-based expression vector, which is subject to bistability. RESULTS: These strains displayed specific glucose consumption and growth rates ranging from 1.75 to 0.45 g/g h and 0.54 to 0.16 h-1, respectively. The rate of acetate production was strongly reduced in all mutant strains when compared with W3110/pV21. In bioreactor cultures, wild type W3110/pV21 produced 50.51 mg/L GFP, whereas strains WG/pV21 with inactive PTS IICBGlc and WGM/pV21 with the additional inactivation of PTS IIABMan showed the highest titers of GFP, corresponding to 342 and 438 mg/L, respectively. Moreover, we showed experimentally that bistable expression systems, as lac-based ones, induce strong phenotypic segregation among microbial populations. CONCLUSIONS: We have demonstrated that reduction on glucose consumption rate in E. coli leads to an improvement of GFP production. Furthermore, from the perspective of phenotypic heterogeneity, we observed in this case that heterogeneous systems are also the ones leading to the highest performance. This observation suggests reconsidering the generally accepted proposition stating that phenotypic heterogeneity is generally unwanted in bioprocess applications.


Escherichia coli/genetics , Glucose/metabolism , Metabolic Engineering/methods , Acetates/metabolism , Biological Transport , Bioreactors , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Flow Cytometry , Glucose Transport Proteins, Facilitative/metabolism , Green Fluorescent Proteins/analysis , Kinetics , Microfluidic Analytical Techniques
11.
mBio ; 9(3)2018 06 12.
Article En | MEDLINE | ID: mdl-29895634

Persistence is a reversible and low-frequency phenomenon allowing a subpopulation of a clonal bacterial population to survive antibiotic treatments. Upon removal of the antibiotic, persister cells resume growth and give rise to viable progeny. Type II toxin-antitoxin (TA) systems were assumed to play a key role in the formation of persister cells in Escherichia coli based on the observation that successive deletions of TA systems decreased persistence frequency. In addition, the model proposed that stochastic fluctuations of (p)ppGpp levels are the basis for triggering activation of TA systems. Cells in which TA systems are activated are thought to enter a dormancy state and therefore survive the antibiotic treatment. Using independently constructed strains and newly designed fluorescent reporters, we reassessed the roles of TA modules in persistence both at the population and single-cell levels. Our data confirm that the deletion of 10 TA systems does not affect persistence to ofloxacin or ampicillin. Moreover, microfluidic experiments performed with a strain reporting the induction of the yefM-yoeB TA system allowed the observation of a small number of type II persister cells that resume growth after removal of ampicillin. However, we were unable to establish a correlation between high fluorescence and persistence, since the fluorescence of persister cells was comparable to that of the bulk of the population and none of the cells showing high fluorescence were able to resume growth upon removal of the antibiotic. Altogether, these data show that there is no direct link between induction of TA systems and persistence to antibiotics.IMPORTANCE Within a growing bacterial population, a small subpopulation of cells is able to survive antibiotic treatment by entering a transient state of dormancy referred to as persistence. Persistence is thought to be the cause of relapsing bacterial infections and is a major public health concern. Type II toxin-antitoxin systems are small modules composed of a toxic protein and an antitoxin protein counteracting the toxin activity. These systems were thought to be pivotal players in persistence until recent developments in the field. Our results demonstrate that previous influential reports had technical flaws and that there is no direct link between induction of TA systems and persistence to antibiotics.


Bacterial Toxins/metabolism , Escherichia coli/growth & development , Escherichia coli/metabolism , Toxin-Antitoxin Systems , Anti-Bacterial Agents/pharmacology , Bacterial Toxins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Deletion , Gene Expression Regulation, Bacterial , Humans , Operon , Toxin-Antitoxin Systems/drug effects
...