Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Immunol ; : e2350943, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39233527

RESUMEN

Macrophage infiltration and accumulation in the atherosclerotic lesion are associated with plaque progression and instability. Depletion of macrophages from the lesion might provide valuable insights into plaque stabilization processes. Therefore, we assessed the effects of systemic and local macrophage depletion on atherogenesis. To deplete monocytes/macrophages we used atherosclerosis-susceptible Apoe- /- mice, bearing a MaFIA (macrophage-Fas-induced-apoptosis) suicide construct under control of the Csf1r (CD115) promotor, where selective apoptosis of Csf1r-expressing cells was induced in a controlled manner, by administration of a drug, AP20187. Systemic induction of apoptosis resulted in a decrease in lesion macrophages and smooth-muscle cells. Plaque size and necrotic core size remained unaffected. Two weeks after the systemic depletion of macrophages, we observed a replenishment of the myeloid compartment. Myelopoiesis was modulated resulting in an expansion of CSF1Rlo myeloid cells in the circulation and a shift from Ly6chi monocytes toward Ly6cint and Ly6clo populations in the spleen. Local apoptosis induction led to a decrease in plaque burden and macrophage content with marginal effects on the circulating myeloid cells. Local, but not systemic depletion of Csf1r+ myeloid cells resulted in decreased plaque burden. Systemic depletion led to CSF1Rlo-monocyte expansion in blood, possibly explaining the lack of effects on plaque development.

2.
Cardiovasc Diabetol ; 23(1): 240, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978031

RESUMEN

BACKGROUND: Metabolism is increasingly recognized as a key regulator of the function and phenotype of the primary cellular constituents of the atherosclerotic vascular wall, including endothelial cells, smooth muscle cells, and inflammatory cells. However, a comprehensive analysis of metabolic changes associated with the transition of plaque from a stable to a hemorrhaged phenotype is lacking. METHODS: In this study, we integrated two large mRNA expression and protein abundance datasets (BIKE, n = 126; MaasHPS, n = 43) from human atherosclerotic carotid artery plaque to reconstruct a genome-scale metabolic network (GEM). Next, the GEM findings were linked to metabolomics data from MaasHPS, providing a comprehensive overview of metabolic changes in human plaque. RESULTS: Our study identified significant changes in lipid, cholesterol, and inositol metabolism, along with altered lysosomal lytic activity and increased inflammatory activity, in unstable plaques with intraplaque hemorrhage (IPH+) compared to non-hemorrhaged (IPH-) plaques. Moreover, topological analysis of this network model revealed that the conversion of glutamine to glutamate and their flux between the cytoplasm and mitochondria were notably compromised in hemorrhaged plaques, with a significant reduction in overall glutamate levels in IPH+ plaques. Additionally, reduced glutamate availability was associated with an increased presence of macrophages and a pro-inflammatory phenotype in IPH+ plaques, suggesting an inflammation-prone microenvironment. CONCLUSIONS: This study is the first to establish a robust and comprehensive GEM for atherosclerotic plaque, providing a valuable resource for understanding plaque metabolism. The utility of this GEM was illustrated by its ability to reliably predict dysregulation in the cholesterol hydroxylation, inositol metabolism, and the glutamine/glutamate pathway in rupture-prone hemorrhaged plaques, a finding that may pave the way to new diagnostic or therapeutic measures.


Asunto(s)
Enfermedades de las Arterias Carótidas , Ácido Glutámico , Glutamina , Macrófagos , Redes y Vías Metabólicas , Fenotipo , Placa Aterosclerótica , Humanos , Glutamina/metabolismo , Ácido Glutámico/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/genética , Rotura Espontánea , Arterias Carótidas/patología , Arterias Carótidas/metabolismo , Metabolómica , Bases de Datos Genéticas , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Metabolismo Energético , Conjuntos de Datos como Asunto , Masculino
3.
Arterioscler Thromb Vasc Biol ; 44(3): 741-754, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38299357

RESUMEN

BACKGROUND: The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation. METHODS: In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27). RESULTS: MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; P≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; P=0.024) and LPA(18:1) (lysophosphatidic acid; P=0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (P<0.001 and P=0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; P=0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]). CONCLUSIONS: An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.


Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Animales , Ratones , Placa Aterosclerótica/metabolismo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/metabolismo , Factores de Riesgo , Aterosclerosis/diagnóstico , Aterosclerosis/metabolismo , Aorta/diagnóstico por imagen , Aorta/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Glicerofosfolípidos/metabolismo , Factores de Riesgo de Enfermedad Cardiaca
4.
Front Immunol ; 15: 1286382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410507

RESUMEN

Introduction: The impact of cardiovascular disease (CVD) risk factors, encompassing various biological determinants and unhealthy lifestyles, on the functional dynamics of circulating monocytes-a pivotal cell type in CVD pathophysiology remains elusive. In this study, we aimed to elucidate the influence of CVD risk factors on monocyte transcriptional responses to an infectious stimulus. Methods: We conducted a comparative analysis of monocyte gene expression profiles from the CTMM - CIRCULATING CELLS Cohort of coronary artery disease (CAD) patients, at baseline and after lipopolysaccharide (LPS) stimulation. Gene co-expression analysis was used to identify gene modules and their correlations with CVD risk factors, while pivotal transcription factors controlling the hub genes in these modules were identified by regulatory network analyses. The identified gene module was subjected to a drug repurposing screen, utilizing the LINCS L1000 database. Results: Monocyte responsiveness to LPS showed a highly significant, negative correlation with blood pressure levels (ρ< -0.4; P<10-80). We identified a ZNF12/ZBTB43-driven gene module closely linked to diastolic blood pressure, suggesting that monocyte responses to infectious stimuli, such as LPS, are attenuated in CAD patients with elevated diastolic blood pressure. This attenuation appears associated with a dampening of the LPS-induced suppression of oxidative phosphorylation. Finally, we identified the serine-threonine inhibitor MW-STK33-97 as a drug candidate capable of reversing this aberrant LPS response. Conclusions: Monocyte responses to infectious stimuli may be hampered in CAD patients with high diastolic blood pressure and this attenuated inflammatory response may be reversed by the serine-threonine inhibitor MW-STK33-97. Whether the identified gene module is a mere indicator of, or causal factor in diastolic blood pressure and the associated dampened LPS responses remains to be determined.


Asunto(s)
Enfermedad de la Arteria Coronaria , Hipertensión , Humanos , Enfermedad de la Arteria Coronaria/metabolismo , Monocitos/metabolismo , Redes Reguladoras de Genes , Lipopolisacáridos/farmacología , Hipertensión/genética , Arterias/metabolismo , Serina/metabolismo , Treonina/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética
5.
Eur J Immunol ; 54(1): e2350464, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37943053

RESUMEN

During atherogenesis, plaque macrophages take up and process deposited lipids, trigger inflammation, and form necrotic cores. The traditional inflammatory/anti-inflammatory paradigm has proven insufficient in explaining their complex disease-driving mechanisms. Instead, we now appreciate that macrophages exhibit remarkable heterogeneity and functional specialization in various pathological contexts, including atherosclerosis. Technical advances for studying individual cells, especially single-cell RNA sequencing, indeed allowed to identify novel macrophage subsets in both murine and human atherosclerosis, highlighting the existence of diverse macrophage activation states throughout pathogenesis. In addition, recent studies highlighted the role of the local microenvironment in shaping the macrophages' phenotype and function. However, this remains largely undescribed in the context of atherosclerosis. In this review we explore the origins of macrophages and their functional specialization, shedding light on the diverse sources of macrophage accumulation in the atherosclerotic plaque. Next, we discuss the phenotypic diversity observed in both murine and human atherosclerosis, elucidating their distinct functions and spatial distribution within plaques. Finally, we highlight the importance of the local microenvironment in both phenotypic and functional specialization of macrophages in atherosclerosis and elaborate on the need for spatial multiomics approaches to provide a better understanding of the different macrophage subsets' roles in the pathogenesis of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Animales , Ratones , Aterosclerosis/patología , Placa Aterosclerótica/patología , Macrófagos/patología , Monocitos/patología , Fenotipo , Activación de Macrófagos/genética
6.
Front Immunol ; 14: 1165306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920458

RESUMEN

Introduction: Inhibition of STAT5 was recently reported to reduce murine atherosclerosis. However, the role of STAT5 isoforms, and more in particular STAT5A in macrophages in the context of human atherosclerosis remains unknown. Methods and results: Here, we demonstrate reciprocal expression regulation of STAT5A and STAT5B in human atherosclerotic lesions. The former was highly upregulated in ruptured over stable plaque and correlated with macrophage presence, a finding that was corroborated by the high chromosomal accessibility of STAT5A but not B gene in plaque macrophages. Phosphorylated STAT5 correlated with macrophages confirming its activation status. As macrophage STAT5 is activated by GM-CSF, we studied the effects of its silencing in GM-CSF differentiated human macrophages. STAT5A knockdown blunted the immune response, phagocytosis, cholesterol metabolism, and augmented apoptosis terms on transcriptional levels. These changes could partially be confirmed at functional level, with significant increases in apoptosis and decreases in lipid uptake and IL-6, IL-8, and TNFa cytokine secretion after STAT5A knockdown. Finally, inhibition of general and isoform A specific STAT5 significantly reduced the secretion of TNFa, IL-8 and IL-10 in ex vivo tissue slices of advanced human atherosclerotic plaques. Discussion: In summary, we identify STAT5A as an important determinant of macrophage functions and inflammation in the context of atherosclerosis and show its promise as therapeutic target in human atherosclerotic plaque inflammation.


Asunto(s)
Aterosclerosis , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Animales , Ratones , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Transactivadores/genética , Factor de Transcripción STAT5/metabolismo , Interleucina-8/metabolismo , Transducción de Señal , Macrófagos , Aterosclerosis/metabolismo , Inflamación/metabolismo , Proteínas Supresoras de Tumor/metabolismo
7.
STAR Protoc ; 4(4): 102601, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742177

RESUMEN

Recent technical advances, such as single-cell RNA sequencing and mass cytometry, improve identification of cell types and subsets in a range of healthy and diseased tissues at the expense of their cellular and molecular context. Here, we present a protocol for in situ multispectral imaging to map myeloid cell heterogeneity in tissue cryosections, describing steps for cutting sequential sections, antibody titration, and building a spectral library. We then detail procedures for multispectral imaging and preparing data for downstream analysis. For complete details on the use and execution of this protocol, please refer to Goossens et al. (2022).1.


Asunto(s)
Crioultramicrotomía , Células Mieloides , Diagnóstico por Imagen , Biblioteca de Genes
8.
Atherosclerosis ; 384: 117123, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37127497

RESUMEN

BACKGROUND AND AIMS: This study aims to identify sex-specific transcriptional differences and signaling pathways in circulating monocytes contributing to cardiovascular disease. METHODS AND RESULTS: We generated sex-biased gene expression signatures by comparing male versus female monocytes of coronary artery disease (CAD) patients (n = 450) from the Center for Translational Molecular Medicine-Circulating Cells Cohort. Gene set enrichment analysis demonstrated that monocytes from female CAD patients carry stronger chemotaxis and migratory signature than those from males. We then inferred cytokine signaling activities based on CytoSig database of 51 cytokine and growth factor regulation profiles. Monocytes from females feature a higher activation level of EGF, IFN1, VEGF, GM-CSF, and CD40L pathways, whereas IL-4, INS, and HMGB1 signaling was seen to be more activated in males. These sex differences were not observed in healthy subjects, as shown for an independent monocyte cohort of healthy subjects (GSE56034, n = 485). More pronounced GM-CSF signaling in monocytes of female CAD patients was confirmed by the significant enrichment of GM-CSF-activated monocyte signature in females. As we show these effects were not due to increased plasma levels of the corresponding ligands, sex-intrinsic differences in monocyte signaling regulation are suggested. Consistently, regulatory network analysis revealed jun-B as a shared transcription factor activated in all female-specific pathways except IFN1 but suppressed in male-activated IL-4. CONCLUSIONS: We observed overt CAD-specific sex differences in monocyte transcriptional profiles and cytokine- or growth factor-induced responses, which provide insights into underlying mechanisms of sex differences in CVD.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Humanos , Masculino , Femenino , Monocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Caracteres Sexuales , Interleucina-4 , Citocinas/metabolismo , Transducción de Señal
9.
Cardiovasc Res ; 119(11): 2033-2045, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37161473

RESUMEN

Monocytes circulate the vasculature at steady state and are recruited to sites of inflammation where they differentiate into macrophages (MФ) to replenish tissue-resident MФ populations and engage in the development of cardiovascular disease (CVD). Monocytes display considerable heterogeneity, currently reflected by a nomenclature based on their expression of cluster of differentiation (CD) 14 and CD16, distinguishing CD14++CD16- classical (cMo), CD14++CD16+ intermediate (intMo) and CD14+CD16++ non-classical (ncMo) monocytes. Several reports point to shifted subset distributions in the context of CVD, with significant association of intMo numbers with atherosclerosis, myocardial infarction, and heart failure. However, clear indications of their causal involvement as well as their predictive value for CVD are lacking. As recent high-parameter cytometry and single-cell RNA sequencing (scRNA-Seq) studies suggest an even higher degree of heterogeneity, better understanding of the functionalities of these subsets is pivotal. Considering their high heterogeneity, surprisingly little is known about functional differences between MФ originating from monocytes belonging to different subsets, and implications thereof for CVD pathogenesis. This paper provides an overview of recent findings on monocyte heterogeneity in the context of homeostasis and disease as well as functional differences between the subsets and their potential to differentiate into MФ, focusing on their role in vessels and the heart. The emerging paradigm of monocyte heterogeneity transcending the current tripartite subset division argues for an updated nomenclature and functional studies to substantiate marker-based subdivision and to clarify subset-specific implications for CVD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Infarto del Miocardio , Humanos , Monocitos/metabolismo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/metabolismo , Macrófagos/metabolismo , Aterosclerosis/metabolismo , Infarto del Miocardio/metabolismo , Receptores de IgG/metabolismo , Receptores de Lipopolisacáridos
10.
Front Immunol ; 14: 1078591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969194

RESUMEN

Macrophages (MΦ) are commonly cultured in vitro as a model of their biology and functions in tissues. Recent evidence suggests MΦ to engage in quorum sensing, adapting their functions in response to cues about the proximity of neighboring cells. However, culture density is frequently overlooked in the standardization of culture protocols as well as the interpretation of results obtained in vitro. In this study, we investigated how the functional phenotype of MΦ was influenced by culture density. We assessed 10 core functions of human MΦ derived from the THP-1 cell line as well as primary monocyte-derived MΦ. THP-1 MΦ showed increasing phagocytic activity and proliferation with increasing density but decreasing lipid uptake, inflammasome activation, mitochondrial stress, and secretion of cytokines IL-10, IL-6, IL-1ß, IL-8, and TNF-α. For THP-1 MΦ, the functional profile displayed a consistent trajectory with increasing density when exceeding a threshold (of 0.2 x 103 cells/mm2), as visualized by principal component analysis. Culture density was also found to affect monocyte-derived MΦ, with functional implications that were distinct from those observed in THP-1 MΦ, suggesting particular relevance of density effects for cell lines. With increasing density, monocyte-derived MΦ exhibited progressively increased phagocytosis, increased inflammasome activation, and decreased mitochondrial stress, whereas lipid uptake was unaffected. These different findings in THP-1 MΦ and monocyte-derived MΦ could be attributed to the colony-forming growth pattern of THP-1 MΦ. At the lowest density, the distance to the closest neighboring cells showed greater influence on THP-1 MΦ than monocyte-derived MΦ. In addition, functional differences between monocyte-derived MΦ from different donors could at least partly be attributed to differences in culture density. Our findings demonstrate the importance of culture density for MΦ function and demand for awareness of culture density when conducting and interpreting in vitro experiments.


Asunto(s)
Inflamasomas , Macrófagos , Humanos , Inflamasomas/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Fenotipo , Lípidos
11.
Cardiovasc Res ; 119(7): 1509-1523, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-36718802

RESUMEN

AIMS: Specific fibroblast markers and in-depth heterogeneity analysis are currently lacking, hindering functional studies in cardiovascular diseases (CVDs). Here, we established cell-type markers and heterogeneity in murine and human arteries and studied the adventitial fibroblast response to CVD and its risk factors hypercholesterolaemia and ageing. METHODS AND RESULTS: Murine aorta single-cell RNA-sequencing analysis of adventitial mesenchymal cells identified fibroblast-specific markers. Immunohistochemistry and flow cytometry validated platelet-derived growth factor receptor alpha (PDGFRA) and dipeptidase 1 (DPEP1) across human and murine aorta, carotid, and femoral arteries, whereas traditional markers such as the cluster of differentiation (CD)90 and vimentin also marked transgelin+ vascular smooth muscle cells. Next, pseudotime analysis showed multiple fibroblast clusters differentiating along trajectories. Three trajectories, marked by CD55 (Cd55+), Cxcl chemokine 14 (Cxcl14+), and lysyl oxidase (Lox+), were reproduced in an independent RNA-seq dataset. Gene ontology (GO) analysis showed divergent functional profiles of the three trajectories, related to vascular development, antigen presentation, and/or collagen fibril organization, respectively. Trajectory-specific genes included significantly more genes with known genome-wide associations (GWAS) to CVD than expected by chance, implying a role in CVD. Indeed, differential regulation of fibroblast clusters by CVD risk factors was shown in the adventitia of aged C57BL/6J mice, and mildly hypercholesterolaemic LDLR KO mice on chow by flow cytometry. The expansion of collagen-related CXCL14+ and LOX+ fibroblasts in aged and hypercholesterolaemic aortic adventitia, respectively, coincided with increased adventitial collagen. Immunohistochemistry, bulk, and single-cell transcriptomics of human carotid and aorta specimens emphasized translational value as CD55+, CXCL14+ and LOX+ fibroblasts were observed in healthy and atherosclerotic specimens. Also, trajectory-specific gene sets are differentially correlated with human atherosclerotic plaque traits. CONCLUSION: We provide two adventitial fibroblast-specific markers, PDGFRA and DPEP1, and demonstrate fibroblast heterogeneity in health and CVD in humans and mice. Biological relevance is evident from the regulation of fibroblast clusters by age and hypercholesterolaemia in vivo, associations with human atherosclerotic plaque traits, and enrichment of genes with a GWAS for CVD.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Placa Aterosclerótica , Humanos , Ratones , Animales , Anciano , Placa Aterosclerótica/metabolismo , Hipercolesterolemia/metabolismo , Transcriptoma , Ratones Endogámicos C57BL , Aterosclerosis/metabolismo , Colágeno/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Envejecimiento/genética , Fibroblastos/metabolismo , Colesterol/metabolismo
12.
Cell Metab ; 34(8): 1214-1225.e6, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35858629

RESUMEN

Cells often adopt different phenotypes, dictated by tissue-specific or local signals such as cell-cell and cell-matrix contacts or molecular micro-environment. This holds in extremis for macrophages with their high phenotypic plasticity. Their broad range of functions, some even opposing, reflects their heterogeneity, and a multitude of subsets has been described in different tissues and diseases. Such micro-environmental imprint cannot be adequately studied by single-cell applications, as cells are detached from their context, while histology-based assessment lacks the phenotypic depth due to limitations in marker combination. Here, we present a novel, integrative approach in which 15-color multispectral imaging allows comprehensive cell classification based on multi-marker expression patterns, followed by downstream analysis pipelines to link their phenotypes to contextual, micro-environmental cues, such as their cellular ("community") and metabolic ("local lipidome") niches in complex tissue. The power of this approach is illustrated for myeloid subsets and associated lipid signatures in murine atherosclerotic plaque.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/metabolismo , Biomarcadores/metabolismo , Macrófagos/metabolismo , Espectrometría de Masas , Ratones , Fenotipo
13.
Biomedicines ; 10(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35625889

RESUMEN

BACKGROUND: Pathogens or trauma-derived danger signals induced maturation and activation of plasmacytoid dendritic cells (pDCs) is a pivotal step in pDC-dependent host defense. Exposure of pDC to cardiometabolic disease-associated lipids and proteins may well influence critical signaling pathways, thereby compromising immune responses against endogenous, bacterial and viral pathogens. In this study, we have addressed if hyperlipidemia impacts human pDC activation, cytokine response and capacity to prime CD4+ T cells. METHODS AND RESULTS: We show that exposure to pro-atherogenic oxidized low-density lipoproteins (oxLDL) led to pDC lipid accumulation, which in turn ablated a Toll-like receptor (TLR) 7 and 9 dependent up-regulation of pDC maturation markers CD40, CD83, CD86 and HLA-DR. Moreover, oxLDL dampened TLR9 activation induced the production of pro-inflammatory cytokines in a NUR77/IRF7 dependent manner and impaired the capacity of pDCs to prime and polarize CD4+ T helper (Th) cells. CONCLUSION: Our findings reveal profound effects of dyslipidemia on pDC responses to pathogen-derived signals.

14.
Clin Transl Med ; 11(6): e458, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34185408

RESUMEN

BACKGROUND: While single-omics analyses on human atherosclerotic plaque have been very useful to map stage- or disease-related differences in expression, they only partly capture the array of changes in this tissue and suffer from scale-intrinsic limitations. In order to better identify processes associated with intraplaque hemorrhage and plaque instability, we therefore combined multiple omics into an integrated model. METHODS: In this study, we compared protein and gene makeup of low- versus high-risk atherosclerotic lesion segments from carotid endarterectomy patients, as judged from the absence or presence of intraplaque hemorrhage, respectively. Transcriptomic, proteomic, and peptidomic data of this plaque cohort were aggregated and analyzed by DIABLO, an integrative multivariate classification and feature selection method. RESULTS: We identified a protein-gene associated multiomics model able to segregate stable, nonhemorrhaged from vulnerable, hemorrhaged lesions at high predictive performance (AUC >0.95). The dominant component of this model correlated with αSMA- PDGFRα+ fibroblast-like cell content (p = 2.4E-05) and Arg1+ macrophage content (p = 2.2E-04) and was driven by serum response factor (SRF), possibly in a megakaryoblastic leukemia-1/2 (MKL1/2) dependent manner. Gene set overrepresentation analysis on the selected key features of this model pointed to a clear cardiovascular disease signature, with overrepresentation of extracellular matrix synthesis and organization, focal adhesion, and cholesterol metabolism terms, suggestive of the model's relevance for the plaque vulnerability. Finally, we were able to corroborate the predictive power of the selected features in several independent mRNA and proteomic plaque cohorts. CONCLUSIONS: In conclusion, our integrative omics study has identified an intraplaque hemorrhage-associated cardiovascular signature that provides excellent stratification of low- from high-risk carotid artery plaques in several independent cohorts. Further study revealed suppression of an SRF-regulated disease network, controlling lesion stability, in vulnerable plaque, which can serve as a scaffold for the design of targeted intervention in plaque destabilization.


Asunto(s)
Aterosclerosis/patología , Biomarcadores/metabolismo , Redes Reguladoras de Genes , Péptidos/metabolismo , Proteoma/metabolismo , Factor de Respuesta Sérica/metabolismo , Transcriptoma , Aterosclerosis/genética , Aterosclerosis/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , Péptidos/análisis , Pronóstico , Proteoma/análisis , Factor de Respuesta Sérica/genética
15.
iScience ; 24(1): 101981, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33458623

RESUMEN

Delayed-type hypersensitivity (DTH) responses underpin chronic inflammation. Using a model of oxazolone-induced dermatitis and a combination of transgenic mice, adoptive cell transfer, and selective agonists/antagonists against protease activated receptors, we show that that PAR-1 signaling on macrophages by thrombin is required for effective granuloma formation. Using BM-derived macrophages (BMMs) in vitro, we show that thrombin signaling induced (a) downregulation of cell membrane reverse cholesterol transporter ABCA1 and (b) increased expression of IFNγ receptor and enhanced co-localization within increased areas of cholesterol-rich membrane microdomains. These two key phenotypic changes combined to make thrombin-primed BMMs sensitive to M1 polarization by 1000-fold less IFNγ, compared to resting BMMs. We confirm that changes in ABCA1 expression were directly responsible for the exquisite sensitivity to IFNγ in vitro and for the impact on granuloma formation in vivo. These data indicate that PAR-1 signaling plays a hitherto unrecognized and critical role in DTH responses.

16.
Theranostics ; 10(21): 9512-9527, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32863942

RESUMEN

Rationale: Hypertension is a major risk factor for cerebral small vessel disease, the most prevalent cause of vascular cognitive impairment. As we have shown, hypertension induced by a prolonged Angiotensin II infusion is associated with increased permeability of the blood-brain barrier (BBB), chronic activation of microglia and myelin loss. In this study we therefore aim to determine the contribution of microglia to hypertension-induced cognitive impairment in an experimental hypertension model by a pharmacological depletion approach. Methods: For this study, adult Cx3Cr1 gfp/wtxThy1 yfp/0 reporter mice were infused for 12 weeks with Angiotensin II or saline and subgroups were treated with PLX5622, a highly selective CSF1R tyrosine kinase inhibitor. Systolic blood pressure (SBP) was measured via tail-cuff. Short- and long-term spatial memory was assessed during an Object Location task and a Morris Water Maze task (MWM). Microglia depletion efficacy was assessed by flow cytometry and immunohistochemistry. BBB leakages, microglia phenotype and myelin integrity were assessed by immunohistochemistry. Results: SBP, heart weight and carotid pulsatility were increased by Ang II and were not affected by PLX5622. Short-term memory was significantly impaired in Ang II hypertensive mice, and partly prevented in Ang II mice treated with PLX5622. Histological and flow cytometry analysis revealed almost complete ablation of microglia and a 60% depletion of brain resident perivascular macrophages upon CSF1R inhibition. Number and size of BBB leakages were increased in Ang II hypertensive mice, but not altered by PLX5622 treatment. Microglia acquired a pro-inflammatory phenotype at the site of BBB leakages in both Saline and Ang II mice and were successfully depleted by PLX5622. There was however no significant change in myelin integrity at the site of leakages. Conclusion: Our results show that depletion of microglia and PVMs, by CSF1R inhibition prevents short-term memory impairment in Ang II induced hypertensive mice. We suggest this beneficial effect is mediated by the major decrease of pro-inflammatory microglia within BBB leakages. This novel finding supports the critical role of brain immune cells in the pathogenesis of hypertension-related cognitive impairment. An adequate modulation of microglia /PVM density and phenotype may constitute a relevant approach to prevent and/or limit the progression of vascular cognitive impairment.


Asunto(s)
Angiotensina II/farmacología , Disfunción Cognitiva/prevención & control , Inhibidores Enzimáticos/farmacología , Hipertensión/inducido químicamente , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Animales , Presión Sanguínea/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Hipertensión/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Microglía/metabolismo , Compuestos Orgánicos/farmacología
17.
J Am Soc Mass Spectrom ; 31(9): 1825-1832, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32872786

RESUMEN

Atherosclerosis is the major contributor to cardiovascular diseases. It is a spatially and temporally complex inflammatory disease, in which intravascular accumulation of a plethora of lipids is considered to play a crucial role. To date, both the composition and local distribution of the involved lipids have not been thoroughly mapped yet. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) enables analyzing and visualizing hundreds of lipid molecules within the plaque while preserving each lipid's specific location. In this study, we aim to identify and verify aortic plaque-specific lipids with high-spatial-resolution 2D and 3D MALDI-MSI common to high-fat-diet-fed low-density lipoprotein receptor deficient (ldlr-/-) mice and chow-fed apolipoprotein E deficient (apoe-/-) mice, the two most widely used animal models for atherosclerosis. A total of 11 lipids were found to be significantly and specifically colocalized to the plaques in both mouse models. These were identified and belong to one sphingomyelin (SM), three lysophosphatidic acids (LPA), four lysophosphatidylcholines (LPC), two lysophosphatidylethanolamines (LPE), and one lysophosphatidylinositol (LPI). While these lysolipids and SM 34:0;2 were characteristic of the atherosclerotic aorta plaque itself, LPI 18:0 was mainly localized in the necrotic core of the plaque.


Asunto(s)
Lípidos , Imagen Molecular/métodos , Placa Aterosclerótica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Apolipoproteínas E/genética , Modelos Animales de Enfermedad , Lípidos/análisis , Lípidos/química , Masculino , Ratones , Ratones Noqueados , Placa Aterosclerótica/química , Placa Aterosclerótica/diagnóstico por imagen , Receptores de LDL/genética
18.
Cell Metab ; 29(6): 1376-1389.e4, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30930171

RESUMEN

Macrophages possess intrinsic tumoricidal activity, yet tumor-associated macrophages (TAMs) rapidly adopt an alternative phenotype within the tumor microenvironment that is marked by tumor-promoting immunosuppressive and trophic functions. The mechanisms that promote such TAM polarization remain poorly understood, but once identified, they may represent important therapeutic targets to block the tumor-promoting functions of TAMs and restore their anti-tumor potential. Here, we have characterized TAMs in a mouse model of metastatic ovarian cancer. We show that ovarian cancer cells promote membrane-cholesterol efflux and depletion of lipid rafts from macrophages. Increased cholesterol efflux promoted IL-4-mediated reprogramming, including inhibition of IFNγ-induced gene expression. Genetic deletion of ABC transporters, which mediate cholesterol efflux, reverts the tumor-promoting functions of TAMs and reduces tumor progression. These studies reveal an unexpected role for membrane-cholesterol efflux in driving TAM-mediated tumor progression while pointing to a potentially novel anti-tumor therapeutic strategy.


Asunto(s)
Membrana Celular/metabolismo , Reprogramación Celular/fisiología , Colesterol/metabolismo , Macrófagos/fisiología , Neoplasias/patología , Microambiente Tumoral , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico/fisiología , Células de la Médula Ósea/patología , Células de la Médula Ósea/fisiología , Células Cultivadas , Progresión de la Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/inmunología , Neoplasias/metabolismo , Escape del Tumor/fisiología , Microambiente Tumoral/fisiología
19.
Chemphyschem ; 19(4): 538-546, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-28834650

RESUMEN

Nafion proton exchange membranes dehydrate when they are used in the gas phase and in high-temperature applications, such as fuel cells and (photo)electrolysis. Retaining a high level of membrane hydration under such conditions can be achieved by using inorganic fillers, but has never been demonstrated for thin films. Herein, several types of siliceous nanoparticles were incorporated for the first time into Nafion thin films. For composite Nafion materials, increased water uptake does not always induce increased proton conductivity. Here, increased water uptake did result in higher proton conductivity due to a synergistic effect within the composite film. The nanocomposites displayed a higher water uptake than could be expected based on the water uptake of the individual materials. Excess water present at the Nafion-filler interface was found to cause the proton conductivity of nanocomposite Nafion/Ludox AS-40 thin films to double compared with pristine Nafion at low relative humidity (from 2 to 4 mS cm-2 ). Knowledge about the properties of such interfaces will allow for the better design of self-humidifying nanocomposite Nafion membranes, films, and catalyst layers.

20.
Eur J Pharmacol ; 816: 14-24, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-28989084

RESUMEN

Macrophages are key players in atherosclerotic lesions, regulating the local inflammatory milieu and plaque stability by the secretion of many inflammatory molecules, growth factors and cytokines. Monocytes have long been considered to be the main source of plaque macrophages. However, recent findings provide evidence for proliferation of local macrophages or transdifferentiation from other vascular cells as alternative sources. Recent years of research focused on the further identification and characterisation of macrophage phenotypes and functions. In this review we describe the advances in our understanding of monocyte and macrophage heterogeneity and its implications for specific therapeutic interventions, aiming to reduce the ever growing significant risk of cardiovascular events without any detrimental side effects on the patient's immune response.


Asunto(s)
Macrófagos/citología , Macrófagos/inmunología , Fenotipo , Placa Aterosclerótica/inmunología , Placa Aterosclerótica/terapia , Animales , Humanos , Macrófagos/efectos de los fármacos , Terapia Molecular Dirigida , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA