Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Obesity (Silver Spring) ; 31(7): 1798-1811, 2023 07.
Article En | MEDLINE | ID: mdl-37221655

OBJECTIVE: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) promote urinary glucose excretion, induce weight loss, and reduce fat accumulation. The effects of the SGLT2i dapagliflozin (DAPA) on subcutaneous (SC) and visceral (VIS) adipose tissue function remain unclear. The objective of this study is to evaluate SC and VIS adipose tissue function in an insulin-resistant canine model. METHODS: A total of 12 dogs were fed a high-fat diet (HFD) for 6 weeks and then were given a single low dose of streptozotocin (18.5 mg/kg) to induce insulin resistance. Animals were then randomized and exposed to DAPA (n = 6, 1.25 mg/kg) or placebo (n = 6) once per day for 6 weeks while remaining on the HFD. RESULTS: DAPA prevented further weight gain induced by the HFD and normalized fat mass. DAPA reduced fasting glucose and increased free fatty acids, adiponectin, and ß-hydroxybutyrate. DAPA reduced adipocyte diameter and cell distribution. Furthermore, DAPA increased genes associated with beiging, lipolysis, and adiponectin secretion and the expression of the adiponectin receptor ADR2, in SC and VIS adipose tissue. DAPA increased AMP-activated protein kinase activity and maximal mitochondrial respiratory function, especially in the SC depot. Furthermore, DAPA reduced cytokines and ceramide synthesis enzymes in SC and VIS depots. CONCLUSIONS: For the first time, to our knowledge, we identify mechanisms by which DAPA enhances adipose tissue function in regulating energy homeostasis in an insulin-resistant canine model.


Insulin Resistance , Insulin , Dogs , Animals , Insulin/metabolism , Adiponectin/metabolism , Subcutaneous Fat/metabolism , Adipose Tissue/metabolism , Glucose/metabolism
2.
Drug Metab Dispos ; 51(4): 451-463, 2023 04.
Article En | MEDLINE | ID: mdl-36639243

This study evaluated the mass balance and disposition of AZD4831, a novel myeloperoxidase inhibitor, in six healthy participants using a 14C-labeled microtracer coupled with analysis by accelerator mass spectrometry (AMS). A single oral dose of 10 mg 14C-AZD4831 (14.8 kBq) was administered as a solution, and 14C levels were quantified by AMS in blood, urine, and feces over 336 hours postdose. AZD4831 was rapidly absorbed, and AZD4831 plasma concentrations declined in a biphasic manner, with a long half-life of 52 hours. AZD4831 was eliminated via metabolism and renal excretion. An N-carbamoyl glucuronide metabolite of AZD4831 (M7), formed primarily via UGT1A1, was the predominant circulating metabolite. Presumably, M7 contributed to the long half-life of AZD4831 via biliary elimination and hydrolysis/enterohepatic recirculation of AZD4831. On average, ∼84% of administered 14C-AZD4831 was recovered by 336 hours postdose (urine, 51.2%; feces, 32.4%). Between 32%-44% of the dose was excreted as unchanged AZD4831 in urine, indicating renal elimination as the major excretory route. Only 9.7% of overall fecal recovery was recorded in the first 48 hours, with the remainder excreted over 48%-336 hours, suggesting that most fecal recovery was due to biliary elimination. Furthermore, only 6% of unchanged AZD4831 was recovered in feces. Overall, the fraction of the administered AZD4831 dose absorbed was high. 14C-AZD4831 was well tolerated. These findings contribute to increasing evidence that human absorption, distribution, metabolism, and excretion studies can be performed with acceptable mass balance recovery at therapeutically relevant doses and low radiolabel-specific activity using an AMS-14C microtracer approach. SIGNIFICANCE STATEMENT: In this study, the human absorption, distribution, metabolism, and excretion (hADME) of the novel myeloperoxidase inhibitor AZD4831 was assessed following oral administration. This included investigation of the disposition of M7, the N-carbamoyl glucuronide metabolite. Resolution of challenges highlighted in this study contributes to increasing evidence that hADME objectives can be achieved in a single study for compounds with therapeutically relevant doses and low radiolabel-specific activity by using an AMS-14C microtracer approach, thus reducing the need for preclinical radiolabeled studies.


Glucuronides , Peroxidase , Humans , Glucuronides/analysis , Pyrimidines , Feces/chemistry , Mass Spectrometry , Administration, Oral , Carbon Radioisotopes/analysis
3.
Drug Metab Dispos ; 51(4): 464-479, 2023 04.
Article En | MEDLINE | ID: mdl-36653117

We report herein an in-depth analysis of the metabolism of the novel myeloperoxidase inhibitor AZD4831 ((R)-1-(2-(1-aminoethyl)-4-chlorobenzyl)-2-thioxo-2,3-dihydro-1H-pyrrolo[3,2-d]pyrimidin-4(5H)-one) in animals and human. Quantitative and qualitative metabolite profiling were performed on samples collected from mass balance studies in rats and humans. Exposure of circulating human metabolites with comparable levels in animal species used in safety assessment were also included. Structural characterization of 20 metabolites was performed by liquid chromatography high-resolution mass spectrometry, and quantification was performed by either 14C analysis using solid phase scintillation counting or accelerator mass spectrometry and, where available, authentication with synthesized metabolite standards. A complete mass balance study in rats is presented, while data from dogs and human are limited to metabolite profiling and characterization. The metabolism of AZD4831 is mainly comprised of reactions at the primary amine nitrogen and the thiourea sulfur, resulting in several conjugated metabolites with or without desulfurization. A carbamoyl glucuronide metabolite of AZD4831 (M7) was the most abundant plasma metabolite in both human healthy volunteers and heart failure patients after single and repeated dose administration of AZD4831, accounting for 75%-80% of the total drug-related exposure. Exposures to M7 and other human circulating metabolites were covered in rats and/or dogs, the two models most frequently used in the toxicology studies, and were also highly abundant in the mouse, the second model other than rat used in carcinogenicity studies. The carbamoyl glucuronide M7 was the main metabolite in rat bile, while a desulfurized and cyclized metabolite (M5) was abundant in rat plasma and excreta. SIGNIFICANCE STATEMENT: The biotransformation of AZD4831, a novel myeloperoxidase inhibitor inhibiting xanthine derivative bearing thiourea and primary aliphatic amine functions, is described. Twenty characterized metabolites demonstrate the involvement of carbamoylation with glucuronidation, desulfurization, and cyclization as main biotransformation reactions. The carbamoyl glucuronide was the main metabolite in human plasma, likely governed by a significant species difference in plasma protein binding for this metabolite, but this and other human plasma metabolites were covered in animals used in the toxicity studies.


Glucuronides , Peroxidase , Humans , Rats , Mice , Animals , Dogs , Biotransformation , Chromatography, High Pressure Liquid , Amines
4.
Front Pharmacol ; 12: 681455, 2021.
Article En | MEDLINE | ID: mdl-34483899

We investigated the effects of chronic oral administration of mineral oil, versus corn oil as control, on intestinal permeability, inflammatory markers, and plasma lipids in APOE*3-Leiden.CETP mice. Mice received mineral oil or corn oil 15 or 30 µL/mouse/day for 16 weeks (15 mice/group). Intestinal permeability was increased with mineral versus corn oil 30 µL/day, shown by increased mean plasma FITC-dextran concentrations 2 h post-administration (11 weeks: 1.5 versus 1.1 µg/ml, p = 0.02; 15 weeks: 1.7 versus 1.3 µg/ml, p = 0.08). Mean plasma lipopolysaccharide-binding protein levels were raised with mineral versus corn oil 30 µL/day (12 weeks: 5.8 versus 4.4 µg/ml, p = 0.03; 16 weeks: 5.8 versus 4.5 µg/ml, p = 0.09), indicating increased intestinal bacterial endotoxin absorption and potential pro-inflammatory effects. Plasma cholesterol and triglyceride concentrations were decreased with mineral oil, without affecting liver lipids among treated groups. Fecal neutral sterol measurements indicated increased fecal cholesterol excretion with mineral oil 30 µL/day (+16%; p = 0.04). Chronic oral administration of mineral oil in APOE*3-Leiden.CETP mice increased intestinal permeability, with potential pro-inflammatory effects, and decreased plasma cholesterol and triglyceride levels. Our findings may raise concerns about the use of mineral oil as a placebo in clinical studies.

5.
J Pharmacol Exp Ther ; 378(2): 108-123, 2021 08.
Article En | MEDLINE | ID: mdl-34074714

Verinurad is a selective uric acid transporter 1 (URAT1) inhibitor in development for the treatment of chronic kidney disease and heart failure. In humans, two major acyl glucuronide metabolites have been identified: direct glucuronide M1 and N-oxide glucuronide M8. Using in vitro systems recommended by regulatory agencies, we evaluated the interactions of verinurad, M1, and M8 with major drug-metabolizing enzymes and transporters and the potential for clinically relevant drug-drug interactions (DDIs). The IC50 for inhibition of CYP2C8, CYP2C9, and CYP3A4/5 for verinurad was ≥14.5 µM, and maximum free plasma concentration (Iu,max)/IC50 was <0.02 at the anticipated therapeutic Cmax and therefore not considered a DDI risk. Verinurad was not an inducer of CYP1A2, CYP2B6, or CYP3A4/5. Verinurad was identified as a substrate of the hepatic uptake transporter organic anion-transporting polypeptide (OATP) 1B3. Since verinurad hepatic uptake involved both active and passive transport, there is a low risk of clinically relevant DDIs with OATP, and further study is warranted. Verinurad was a substrate of the efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), and renal transporter organic anion transporter 1 (OAT1), although it is not considered a DDI risk in vivo because of dose-proportional pharmacokinetics (P-gp and BCRP) and limited renal excretion of verinurad (OAT1). M1 and M8 were substrates of multidrug resistance-associated protein (MRP) 2 and MRP4 and inhibitors of MRP2. Apart from verinurad being a substrate of OATP1B3 in vitro, the potential for clinically relevant DDIs involving verinurad and its metabolites as victims or perpetrators of metabolizing enzymes or drug transporters is considered low. SIGNIFICANCE STATEMENT: Drug transporters and metabolizing enzymes have an important role in the absorption and disposition of a drug and its metabolites. Using in vitro systems recommended by regulatory agencies, we determined that, apart from verinurad being a substrate of organic anion-transporting polypeptide 1B3, the potential for clinically relevant drug-drug interactions involving verinurad and its metabolites M1 and M8 as victims or perpetrators of metabolizing enzymes or drug transporters is considered low.


ATP Binding Cassette Transporter, Subfamily G, Member 2 , Neoplasm Proteins , Biological Transport , Drug Interactions , Humans , Naphthalenes , Propionates , Pyridines
6.
Eur J Pharm Sci ; 161: 105776, 2021 Jun 01.
Article En | MEDLINE | ID: mdl-33667667

We investigated the effects of mineral oil on statin pharmacokinetics and inflammatory markers in animal models. A new synthesis strategy produced regioisomers that facilitated the characterization of the main metabolite (M1) of atorvastatin, a lipophilic statin, in C57BL/6NCrl mice. The chemical structure of M1 in mice was confirmed as ortho-hydroxy ß-oxidized atorvastatin. Atorvastatin and M1 pharmacokinetics and inflammatory markers were assessed in C57BL6/J mice given atorvastatin 5 mg/kg/day or 10 mg/kg/day, as a single dose or for 21 days, with or without 10 µL or 30 µL mineral oil. No consistent differences in plasma exposure of atorvastatin or M1 were observed in mice after single or repeat dosing of atorvastatin with or without mineral oil. However, mice administered atorvastatin 10 mg/kg with 30 µL mineral oil for 21 days had significantly increased plasma levels of serum amyloid A (mean 9.6 µg/mL vs 7.9 µg/mL without mineral oil; p < 0.01) and significantly increased proportions of C62Lhigh B cells (mean 18% vs 12% without mineral oil; p = 0.04). There were no statistically significant differences for other inflammatory markers assessed. In dogs, pharmacokinetics of atorvastatin, its two hydroxy metabolites and pravastatin (a hydrophilic statin) were evaluated after single administration of atorvastatin 10 mg plus pravastatin 40 mg with or without 2 g mineral oil. Pharmacokinetics of atorvastatin, hydroxylated atorvastatin metabolites or pravastatin were not significantly different after single dosing with or without mineral oil in dogs. Collectively, the results in mice and dogs indicate that mineral oil does not affect atorvastatin or pravastatin pharmacokinetics, but could cause low-grade inflammation with chronic oral administration, which warrants further investigation.


Heptanoic Acids , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Animals , Atorvastatin , Dogs , Mice , Mice, Inbred C57BL , Mineral Oil , Pravastatin , Pyrroles
7.
J Pharm Pharmacol ; 56(6): 749-55, 2004 Jun.
Article En | MEDLINE | ID: mdl-15231040

The objective of this study was to investigate the in-vitro metabolism of isotetrandrine, a bisbenzylisoquinoline alkaloid, using rat hepatic S9 fraction and to profile and identify its metabolites using high-performance liquid chromatography-atmospheric pressure ionization mass spectrometry (HPLC-MS) and tandem mass spectrometry (MS/MS). Isotetrandrine was incubated at a concentration of 100 microg mL(-1) with male rat hepatic S9 fraction in the presence of an NADPH generating system (Tris buffer, pH 7.4, 37 degrees C). Samples were removed at 60 min after reaction initiation. Unchanged isotetrandrine (approximately 63% of the sample) and four metabolites were profiled, characterized and tentatively identified using solvent extraction, methyl derivatization, and HPLC-MS and MS/MS techniques. Isotetrandrine metabolites were mainly formed via two main pathways, N-demethylation and isoquinoline ring oxidation. The first pathway produced a major metabolite, N-desmethyl isotetrandrine (approximately 16% of the sample). The second pathway produced three minor oxidized metabolites, hydroxy-isotetrandrine (approximately 6% of the sample), oxo-isotetrandrine (approximately 7% of the sample), and oxohydroxy-isotetrandrine (approximately 7% of the sample). Diazomethane treatment of these metabolites did not produce any methyl derivatives and therefore the hydroxylated sites of the metabolites were tentatively assigned at the heterocyclic moieties of the isoquinoline rings. In conclusion, isotetrandrine is substantially metabolized in this in-vitro rat hepatic system.


Alkaloids/metabolism , Benzylisoquinolines/metabolism , Liver/metabolism , Animals , Chromatography, High Pressure Liquid , Chromatography, Liquid , In Vitro Techniques , Male , Mass Spectrometry/methods , Rats
...