Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2025): 20240808, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889791

RESUMEN

Lianas are major contributors to tropical forest dynamics, yet we know little about their mortality. Using overlapping censuses of the lianas and trees across a 50 ha stand of moist tropical forest, we contrasted community-wide patterns of liana mortality with relatively well-studied patterns of tree mortality to quantify patterns of liana death and identify contributing factors. Liana mortality rates were 172% higher than tree mortality rates, but species-level mortality rates of lianas were similar to trees with 'fast' life-history strategies and both growth forms exhibited similar spatial and size-dependent patterns. The mortality rates of liana saplings (<2.1 cm in diameter), which represent about 50% of liana individuals, decreased with increasing disturbance severity and remained consistently low during post-disturbance stand thinning. In contrast, larger liana individuals and trees of all sizes had elevated mortality rates in response to disturbance and their mortality rates decreased over time since disturbance. Within undisturbed forest patches, liana mortality rates increased with increasing soil fertility in a manner similar to trees. The distinct responses of liana saplings to disturbance appeared to distinguish liana mortality from that of trees, whereas similarities in their patterns of death suggest that there are common drivers of woody plant mortality.


Asunto(s)
Bosques , Árboles , Clima Tropical
2.
Nature ; 627(8003): 335-339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418873

RESUMEN

The latitudinal diversity gradient (LDG) dominates global patterns of diversity1,2, but the factors that underlie the LDG remain elusive. Here we use a unique global dataset3 to show that vascular plants on oceanic islands exhibit a weakened LDG and explore potential mechanisms for this effect. Our results show that traditional physical drivers of island biogeography4-namely area and isolation-contribute to the difference between island and mainland diversity at a given latitude (that is, the island species deficit), as smaller and more distant islands experience reduced colonization. However, plant species with mutualists are underrepresented on islands, and we find that this plant mutualism filter explains more variation in the island species deficit than abiotic factors. In particular, plant species that require animal pollinators or microbial mutualists such as arbuscular mycorrhizal fungi contribute disproportionately to the island species deficit near the Equator, with contributions decreasing with distance from the Equator. Plant mutualist filters on species richness are particularly strong at low absolute latitudes where mainland richness is highest, weakening the LDG of oceanic islands. These results provide empirical evidence that mutualisms, habitat heterogeneity and dispersal are key to the maintenance of high tropical plant diversity and mediate the biogeographic patterns of plant diversity on Earth.


Asunto(s)
Biodiversidad , Mapeo Geográfico , Islas , Plantas , Simbiosis , Animales , Conjuntos de Datos como Asunto , Micorrizas/fisiología , Plantas/microbiología , Polinización , Clima Tropical , Océanos y Mares , Filogeografía
3.
Proc Biol Sci ; 290(2007): 20231290, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37752835

RESUMEN

Understanding how resource limitation and biotic interactions interact across spatial scales is fundamental to explaining the structure of ecological communities. However, empirical studies addressing this issue are often hindered by logistical constraints, especially at local scales. Here, we use a highly tractable arboreal ant study system to explore the interactive effects of resource availability and competition on community structure across three local scales: an individual tree, the nest network created by each colony and the individual ant nest. On individual trees, the ant assemblages are primarily shaped by availability of dead wood, a critical nesting resource. The nest networks within a tree are constrained by the availability of nesting resources but also influenced by the co-occurring species. Within individual nests, the distribution of adult ants is only affected by distance to interspecific competitors. These findings demonstrate that resource limitation exerts the strongest effects on diversity at higher levels of local ecological organization, transitioning to a stronger effect of species interactions at finer scales. Collectively, these results highlight that the process exerting the strongest influence on community structure is highly dependent on the scale at which we examine the community, with shifts occurring even across fine-grained local scales.


Asunto(s)
Hormigas , Animales , Árboles , Madera , Ecosistema
4.
New Phytol ; 238(5): 1865-1875, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36951173

RESUMEN

Lightning is an important agent of plant mortality and disturbance in forests. Lightning-caused disturbance is highly variable in terms of its area of effect and disturbance severity (i.e. tree damage and death), but we do not know how this variation is influenced by forest structure and plant composition. We used a novel lightning detection system to quantify how lianas influenced the severity and spatial extent (i.e. area) of lightning disturbance using 78 lightning strikes in central Panama. The local density of lianas (measured as liana basal area) was positively associated with the number of trees killed and damaged by lightning, and patterns of plant damage indicated that this occurred because lianas facilitated more electrical connections from large to small trees. Liana presence, however, did not increase the area of the disturbance. Thus, lianas increased the severity of lightning disturbance by facilitating damage to additional trees without influencing the footprint of the disturbance. These findings indicate that lianas spread electricity to damage and kill understory trees that otherwise would survive a strike. As liana abundance increases in tropical forests, their negative effects on tree survival with respect to the severity of lightning-related tree damage and death are likely to increase.


Asunto(s)
Bosques , Relámpago , Panamá , Árboles , Clima Tropical
5.
Nat Plants ; 8(9): 1007-1013, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995834

RESUMEN

Lightning is an important agent of mortality for large tropical trees with implications for tree demography and forest carbon budgets. We evaluated interspecific differences in susceptibility to lightning damage using a unique dataset of systematically located lightning strikes in central Panama. We measured differences in mortality among trees damaged by lightning and related those to damage frequency and tree functional traits. Eighteen of 30 focal species had lightning mortality rates that deviated from null expectations. Several species showed little damage and three species had no mortality from lightning, whereas palms were especially likely to die from strikes. Species that were most likely to be struck also showed the highest survival. Interspecific differences in tree tolerance to lightning suggest that lightning-caused mortality shapes compositional dynamics over time and space. Shifts in lightning frequency due to climatic change are likely to alter species composition and carbon cycling in tropical forests.


Asunto(s)
Relámpago , Árboles , Carbono , Bosques , Clima Tropical
6.
Ecology ; 102(12): e03541, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34582567

RESUMEN

Lightning is a common source of disturbance, but its ecological effects in tropical forests are largely undescribed. Here we quantify the contributions of lightning strikes to forest turnover and plant mortality in a lowland Panamanian forest using a real-time lightning monitoring system. We examined 2,195 lightning-damaged trees distributed among 93 different strikes. None exhibited scars or fires. On average, each strike disturbed 451 m2 (95% CI: 365-545 m2 ), created a canopy gap of 304 m2 (95% CI 198-454 m2 ), and caused 7.36 Mg of woody biomass turnover (CI: 5.36-9.65 Mg). Cumulatively, we estimate that lightning strikes in this forest create canopy gaps equaling 0.39% of forest canopy area, representing 20.1% of annual gap area formation, and are responsible for 16.1% of total woody biomass turnover. Trees, lianas, herbaceous climbers and epiphytes were killed by lightning at rates 8-29 times greater than their baseline mortality rates in undamaged control sites. The likelihood of lightning-caused death was higher for trees, lianas, and herbaceous climbers than for epiphytes, and high liana mortality suggests that lightning is an important driver of liana turnover. These results indicate that lightning influences gap dynamics, plant community composition and carbon storage capacity in some tropical forests.


Asunto(s)
Relámpago , Clima Tropical , Biomasa , Bosques , Plantas , Árboles
7.
Nat Plants ; 7(4): 384-391, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33782580

RESUMEN

Tropical forests are mitigating the ongoing climate crisis by absorbing more atmospheric carbon than they emit. However, widespread increases in tree mortality rates are decreasing the ability of tropical forests to assimilate and store carbon. A relatively small number of large trees dominate the contributions of these forests to the global carbon budget, yet we know remarkably little about how these large trees die. Here, we propose a cohesive and empirically informed framework for understanding and investigating size-dependent drivers of tree mortality. This theory-based framework enables us to posit that abiotic drivers of tree mortality-particularly drought, wind and lightning-regulate tropical forest carbon cycling via their disproportionate effects on large trees. As global change is predicted to increase the pressure from abiotic drivers, the associated deaths of large trees could rapidly and lastingly reduce tropical forest biomass stocks. Focused investigations of large tree death are needed to understand how shifting drivers of mortality are restructuring carbon cycling in tropical forests.


Asunto(s)
Ciclo del Carbono , Bosques , Árboles/fisiología , Clima Tropical , Biomasa , Sequías , Dinámica Poblacional , Árboles/crecimiento & desarrollo
8.
Glob Chang Biol ; 26(9): 5017-5026, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32564481

RESUMEN

Lightning is a major agent of disturbance, but its ecological effects in the tropics are unquantified. Here we used ground and satellite sensors to quantify the geography of lightning strikes in terrestrial tropical ecosystems, and to evaluate whether spatial variation in lightning frequency is associated with variation in tropical forest structure and dynamics. Between 2013 and 2018, tropical terrestrial ecosystems received an average of 100.4 million lightning strikes per year, and the frequency of strikes was spatially autocorrelated at local-to-continental scales. Lightning strikes were more frequent in forests, savannas, and urban areas than in grasslands, shrublands, and croplands. Higher lightning frequency was positively associated with woody biomass turnover and negatively associated with aboveground biomass and the density of large trees (trees/ha) in forests across Africa, Asia, and the Americas. Extrapolating from the only tropical forest study that comprehensively assessed tree damage and mortality from lightning strikes, we estimate that lightning directly damages c. 832 million trees in tropical forests annually, of which c. 194 million die. The similarly high lightning frequency in tropical savannas suggests that lightning also influences savanna tree mortality rates and ecosystem processes. These patterns indicate that lightning-caused disturbance plays a major and largely unappreciated role in pantropical ecosystem dynamics and global carbon cycling.


Asunto(s)
Ecosistema , Relámpago , África , Asia , Biomasa , Bosques , Geografía , Árboles , Clima Tropical
9.
New Phytol ; 225(5): 1936-1944, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31610011

RESUMEN

The mortality rates of large trees are critical to determining carbon stocks in tropical forests, but the mechanisms of tropical tree mortality remain poorly understood. Lightning strikes thousands of tropical trees every day, but is commonly assumed to be a minor agent of tree mortality in most tropical forests. We use the first systematic quantification of lightning-caused mortality to show that lightning is a major cause of death for the largest trees in an old-growth lowland forest in Panama. A novel lightning strike location system together with field surveys of strike sites revealed that, on average, each strike directly kills 3.5 trees (> 10 cm diameter) and damages 11.4 more. Given lightning frequency data from the Earth Networks Total Lightning Network and historical total tree mortality rates for this site, we conclude that lightning accounts for 40.5% of the mortality of large trees (> 60 cm diameter) in the short term and probably contributes to an additional 9.0% of large tree deaths over the long term. Any changes in cloud-to-ground lightning frequency due to climatic change will alter tree mortality rates; projected 25-50% increases in lightning frequency would increase large tree mortality rates in this forest by 9-18%. The results of this study indicate that lightning plays a critical and previously underestimated role in tropical forest dynamics and carbon cycling.


Asunto(s)
Árboles , Clima Tropical , Biomasa , Bosques , Panamá
10.
Ecol Evol ; 7(20): 8523-8534, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29075468

RESUMEN

The effects of lightning on trees range from catastrophic death to the absence of observable damage. Such differences may be predictable among tree species, and more generally among plant life history strategies and growth forms. We used field-collected electrical resistivity data in temperate and tropical forests to model how the distribution of power from a lightning discharge varies with tree size and identity, and with the presence of lianas. Estimated heating density (heat generated per volume of tree tissue) and maximum power (maximum rate of heating) from a standardized lightning discharge differed 300% among tree species. Tree size and morphology also were important; the heating density of a hypothetical 10 m tall Alseis blackiana was 49 times greater than for a 30 m tall conspecific, and 127 times greater than for a 30 m tall Dipteryx panamensis. Lianas may protect trees from lightning by conducting electric current; estimated heating and maximum power were reduced by 60% (±7.1%) for trees with one liana and by 87% (±4.0%) for trees with three lianas. This study provides the first quantitative mechanism describing how differences among trees can influence lightning-tree interactions, and how lianas can serve as natural lightning rods for trees.

11.
Ecol Evol ; 7(14): 5111-5122, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28770051

RESUMEN

Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the prevalence of communications towers worldwide, the lightning detection system described here could be implemented in diverse forest types. Data from multiple systems would provide an outstanding opportunity for comparative research on the ecological effects of lightning. Such comparative data are increasingly important given expected increases in lightning frequency with climatic change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA