Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
2.
Sci Rep ; 11(1): 1526, 2021 01 15.
Article En | MEDLINE | ID: mdl-33452396

Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.


Retinal Dystrophies/epidemiology , Retinal Dystrophies/genetics , ATP-Binding Cassette Transporters/genetics , Adult , Aged , Cohort Studies , Cross-Sectional Studies , DNA/genetics , Extracellular Matrix Proteins/genetics , Eye Proteins/genetics , Female , Genetic Testing/methods , Humans , Male , Middle Aged , Mutation/genetics , Myosin VIIa/genetics , Pedigree , Peripherins/genetics , Prevalence , Retinitis Pigmentosa/genetics , Retrospective Studies , Spain/epidemiology
3.
Am J Ophthalmol ; 225: 95-107, 2021 05.
Article En | MEDLINE | ID: mdl-33309813

PURPOSE: To investigate genetics, electrophysiology, and clinical course of KCNV2-associated retinopathy in a cohort of children and adults. STUDY DESIGN: This was a multicenter international clinical cohort study. METHODS: Review of clinical notes and molecular genetic testing. Full-field electroretinography (ERG) recordings, incorporating the international standards, were reviewed and quantified and compared with age and recordings from control subjects. RESULTS: In total, 230 disease-associated alleles were identified from 117 patients, corresponding to 75 different KCNV2 variants, with 28 being novel. The mean age of onset was 3.9 years old. All patients were symptomatic before 12 years of age (range, 0-11 years). Decreased visual acuity was present in all patients, and 4 other symptoms were common: reduced color vision (78.6%), photophobia (53.5%), nyctalopia (43.6%), and nystagmus (38.6%). After a mean follow-up of 8.4 years, the mean best-corrected visual acuity (BCVA ± SD) decreased from 0.81 ± 0.27 to 0.90 ± 0.31 logarithm of minimal angle of resolution. Full-field ERGs showed pathognomonic waveform features. Quantitative assessment revealed a wide range of ERG amplitudes and peak times, with a mean rate of age-associated reduction indistinguishable from the control group. Mean amplitude reductions for the dark-adapted 0.01 ERG, dark-adapted 10 ERG a-wave, and LA 3.0 30 Hz and LA3 ERG b-waves were 55%, 21%, 48%, and 74%, respectively compared with control values. Peak times showed stability across 6 decades. CONCLUSION: In KCNV2-associated retinopathy, full-field ERGs are diagnostic and consistent with largely stable peripheral retinal dysfunction. Report 1 highlights the severity of the clinical phenotype and established a large cohort of patients, emphasizing the unmet need for trials of novel therapeutics.


Potassium Channels, Voltage-Gated/genetics , Retina/physiopathology , Retinitis Pigmentosa/genetics , Adolescent , Adult , Aged , Alleles , Child , Child, Preschool , Dark Adaptation/physiology , Electroretinography , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Middle Aged , Molecular Biology , Phenotype , Refraction, Ocular/physiology , Retinitis Pigmentosa/physiopathology , Retrospective Studies , Tomography, Optical Coherence , Vision Disorders/diagnosis , Vision Disorders/genetics , Vision Disorders/physiopathology , Visual Acuity/physiology , Exome Sequencing , Whole Genome Sequencing
4.
Atherosclerosis ; 311: 37-43, 2020 10.
Article En | MEDLINE | ID: mdl-32937241

BACKGROUND AND AIMS: Familial hypercholesterolemia is most frequently caused by genetic variants in the LDLR gene. Most of LDLR pathogenic variants are missense, followed by splicing and deletion/insertions variants. Mosaicism is a genetic condition in which an individual shows more than one clone of cells with different genotypes. The objective of this article was the molecular characterization of a patient with hypercholesterolemia. METHODS AND RESULTS: Genetic analysis of DNA from peripheral blood and saliva was performed by NGS, Sanger sequencing and pyrosequencing technologies. NGS analysis detected the pathogenic variant LDLR:c.1951G > T:p.(Asp651Tyr) in 9%-12% of reads. The presence of the variant was confirmed by pyrosequencing analysis. The variant found was functional characterized using an in vitro model (CHO-ldlA7 cells). Activity and expression of cell surface LDLR were measured by flow cytometry. Colocalization LDLR-Dil-LDL was detected by immunofluorescence. The LDLR activity showed 80% uptake, 50% binding and 53% expression of cell surface LDLR regarding wild type. CONCLUSIONS: Herein, we report the first case of a mosaic single nucleotide variant affecting the LDLR gene in a patient with familial hypercholesterolemia. As it has been described for other pathologies, mosaicism could be underestimated in FH and its detection will improve with the introduction of NGS technologies in the diagnostic routine.


Hypercholesterolemia , Hyperlipoproteinemia Type II , Animals , Cricetinae , Cricetulus , Humans , Hypercholesterolemia/diagnosis , Hypercholesterolemia/genetics , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/genetics , Mutation , Nucleotides , Receptors, LDL/genetics
5.
Genet Med ; 22(11): 1743-1757, 2020 11.
Article En | MEDLINE | ID: mdl-32661356

Mosaicism denotes an individual who has at least two populations of cells with distinct genotypes that are derived from a single fertilized egg. Genetic variation among the cell lines can involve whole chromosomes, structural or copy-number variants, small or single-nucleotide variants, or epigenetic variants. The mutational events that underlie mosaic variants occur during mitotic cell divisions after fertilization and zygote formation. The initiating mutational event can occur in any types of cell at any time in development, leading to enormous variation in the distribution and phenotypic effect of mosaicism. A number of classification proposals have been put forward to classify genetic mosaicism into categories based on the location, pattern, and mechanisms of the disease. We here propose a new classification of genetic mosaicism that considers the affected tissue, the pattern and distribution of the mosaicism, the pathogenicity of the variant, the direction of the change (benign to pathogenic vs. pathogenic to benign), and the postzygotic mutational mechanism. The accurate and comprehensive categorization and subtyping of mosaicisms is important and has potential clinical utility to define the natural history of these disorders, tailor follow-up frequency and interventions, estimate recurrence risks, and guide therapeutic decisions.


DNA Copy Number Variations , Mosaicism , DNA Mutational Analysis , Humans , Mutation , Software
6.
Eur J Hum Genet ; 28(4): 469-479, 2020 04.
Article En | MEDLINE | ID: mdl-31685998

Tatton-Brown-Rahman (TBRS) syndrome is a recently described overgrowth syndrome caused by loss of function variants in the DNMT3A gene. This gene encodes for a DNA methyltransferase 3 alpha, which is involved in epigenetic regulation, especially during embryonic development. Somatic variants in DNMT3A have been widely studied in different types of tumors, including acute myeloid leukemia, hematopoietic, and lymphoid cancers. Germline gain-of-function variants in this gene have been recently implicated in microcephalic dwarfism. Common clinical features of patients with TBRS include tall stature, macrocephaly, intellectual disability (ID), and a distinctive facial appearance. Differential diagnosis of TBRS comprises Sotos, Weaver, and Malan Syndromes. The majority of these disorders present other clinical features with a high clinical overlap, making necessary a molecular confirmation of the clinical diagnosis. We here describe seven new patients with variants in DNMT3A, four of them with neuropsychiatric disorders, including schizophrenia and psychotic behavior. In addition, one of the patients has developed a brain tumor in adulthood. This patient has also cerebral atrophy, aggressive behavior, ID, and abnormal facial features. Clinical evaluation of this group of patients should include a complete neuropsychiatric assessment together with psychological support in order to detect and manage abnormal behaviors such as aggressiveness, impulsivity, and attention deficit-hyperactivity disorder. TBRS should be suspected in patients with overgrowth, ID, tall stature, and macrocephaly, who also have some neuropsychiatric disorders without any genetic defects in the commonest overgrowth disorders. Molecular confirmation in these patients is mandatory.


DNA (Cytosine-5-)-Methyltransferases/genetics , Growth Disorders/genetics , Intellectual Disability/genetics , Phenotype , Psychotic Disorders/genetics , Adolescent , Adult , Child , DNA Methyltransferase 3A , Female , Growth Disorders/pathology , Humans , Intellectual Disability/pathology , Male , Middle Aged , Mutation , Psychotic Disorders/pathology , Syndrome
7.
Int J Antimicrob Agents ; 54(4): 463-470, 2019 Oct.
Article En | MEDLINE | ID: mdl-31279853

Individualisation of the therapeutic strategy for the oral antifungal agent voriconazole (VCZ) is extremely important for treatment optimisation. To date, regulatory agencies include CYP2C19 as the only major pharmacogenetic (PGx) biomarker in their dosing guidelines; however, the effect of other genes might be important for VCZ dosing prediction. We developed an exploratory PGx study to identify new biomarkers related to VCZ pharmacokinetics. We first designed a 'clinical practice VCZ-AUC prediction model' based on CYP2C19 to be used as a reference model in this study. We then designed a multifactorial polygenic prediction model and found that genetic variability in FMO3, NR1I2, POR, CYP2C9 and CYP3A4 partially contributes to VCZ total area under the concentration-time curve (AUC0-∞) interindividual variability, and its inclusion in VCZ AUC0-∞ prediction algorithms improves model precision. To our knowledge, there are no PGx studies specifically relating POR, FMO3 and NR1I2 polymorphisms to VCZ pharmacokinetic variability. Further research is needed in order to test the model proposed here.


Antifungal Agents/administration & dosage , Antifungal Agents/pharmacokinetics , Genetic Association Studies , Voriconazole/administration & dosage , Voriconazole/pharmacokinetics , Administration, Oral , Adult , Female , Humans , Male , Pharmacogenetics/methods , Randomized Controlled Trials as Topic , Spain , Young Adult
8.
Clin Genet ; 95(4): 516-519, 2019 04.
Article En | MEDLINE | ID: mdl-30635911

Capillary malformation-arteriovenous malformation (CM-AVM) is caused by germline RASA1 and EPHB4 alterations. RASA1 intralesional second hits have also been reported. Here we report RASA1 constitutional mosaicism, defined here as the presence of a mosaic variant in all cell types of an individual, in two patients with CM-AVM. High-throughput sequencing was used to search for RASA1 pathogenic variants in blood samples from two unrelated patients with CM-AVM. An affected tissue sample from one of the patients was also analyzed. Both patients showed different nonsense RASA1 variants in mosaic, ranging from 7% to 21.5%, in blood samples and in the corresponding affected tissue sample from one of the patients. In conclusion, we report for the first time the presence of RASA1 constitutional mosaicism in CM-AVM. Constitutional mosaicism has implications for accurate molecular diagnosis and recurrence risk and helps to explain the great phenotypic variability in CM-AVM.


Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics , Capillaries/abnormalities , Genetic Association Studies , Genetic Predisposition to Disease , Mosaicism , Mutation , Port-Wine Stain/diagnosis , Port-Wine Stain/genetics , p120 GTPase Activating Protein/genetics , Alleles , Amino Acid Substitution , Computed Tomography Angiography , Female , Genetic Association Studies/methods , Genotype , Humans , Male
9.
J Exp Med ; 216(2): 407-418, 2019 02 04.
Article En | MEDLINE | ID: mdl-30591517

Generalized lymphatic anomaly (GLA) is a vascular disorder characterized by diffuse or multifocal lymphatic malformations (LMs). The etiology of GLA is poorly understood. We identified four distinct somatic PIK3CA variants (Glu542Lys, Gln546Lys, His1047Arg, and His1047Leu) in tissue samples from five out of nine patients with GLA. These same PIK3CA variants occur in PIK3CA-related overgrowth spectrum and cause hyperactivation of the PI3K-AKT-mTOR pathway. We found that the mTOR inhibitor, rapamycin, prevented lymphatic hyperplasia and dysfunction in mice that expressed an active form of PIK3CA (His1047Arg) in their lymphatics. We also found that rapamycin reduced pain in patients with GLA. In conclusion, we report that somatic activating PIK3CA mutations can cause GLA, and we provide preclinical and clinical evidence to support the use of rapamycin for the treatment of this disabling and deadly disease.


Class I Phosphatidylinositol 3-Kinases , Lymphangioleiomyomatosis , Lymphatic System , Mutation, Missense , Sirolimus/administration & dosage , Adolescent , Adult , Amino Acid Substitution , Child , Child, Preschool , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Female , Humans , Lymphangioleiomyomatosis/diagnostic imaging , Lymphangioleiomyomatosis/drug therapy , Lymphangioleiomyomatosis/enzymology , Lymphangioleiomyomatosis/genetics , Lymphatic System/abnormalities , Lymphatic System/diagnostic imaging , Lymphatic System/enzymology , Male , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
10.
Genet Med ; 20(8): 882-889, 2018 08.
Article En | MEDLINE | ID: mdl-29446767

PURPOSE: CLAPO syndrome is a rare vascular disorder characterized by capillary malformation of the lower lip, lymphatic malformation predominant on the face and neck, asymmetry, and partial/generalized overgrowth. Here we tested the hypothesis that, although the genetic cause is not known, the tissue distribution of the clinical manifestations in CLAPO seems to follow a pattern of somatic mosaicism. METHODS: We clinically evaluated a cohort of 13 patients with CLAPO and screened 20 DNA blood/tissue samples from 9 patients using high-throughput, deep sequencing. RESULTS: We identified five activating mutations in the PIK3CA gene in affected tissues from 6 of the 9 patients studied; one of the variants (NM_006218.2:c.248T>C; p.Phe83Ser) has not been previously described in developmental disorders. CONCLUSION: We describe for the first time the presence of somatic activating PIK3CA mutations in patients with CLAPO. We also report an update of the phenotype and natural history of the syndrome.


Arteriovenous Malformations/genetics , Arteriovenous Malformations/physiopathology , Class I Phosphatidylinositol 3-Kinases/genetics , Lymphatic Diseases/genetics , Lymphatic Diseases/physiopathology , Adolescent , Adult , Child , Class I Phosphatidylinositol 3-Kinases/physiology , Female , Genetic Association Studies/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Mutation , Phosphatidylinositol 3-Kinases/genetics , Retrospective Studies
11.
Clin Transl Sci ; 11(2): 189-199, 2018 03.
Article En | MEDLINE | ID: mdl-29193749

In 2014, we established a pharmacogenetics unit with the intention of facilitating the integration of pharmacogenetic testing into clinical practice. This unit was centered around two main ideas: i) individualization of clinical recommendations, and ii) preemptive genotyping in risk populations. Our unit is based on the design and validation of a single nucleotide polymorphism (SNP) microarray, which has allowed testing of 180 SNPs associated with drug response (PharmArray), and clinical consultation regarding the results. Herein, we report our experience in integrating pharmacogenetic testing into our hospital and we present the results of the 2,539 pharmacogenetic consultation requests received over the past 3 years in our unit. The results demonstrate the feasibility of implementing pharmacogenetic testing in clinical practice within a national health system.


Evidence-Based Medicine/methods , Health Plan Implementation/statistics & numerical data , National Health Programs/statistics & numerical data , Pharmacogenomic Testing/statistics & numerical data , Precision Medicine/methods , Evidence-Based Medicine/trends , Feasibility Studies , Genotype , Health Plan Implementation/trends , Humans , National Health Programs/trends , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Oligonucleotide Array Sequence Analysis/trends , Pharmacogenomic Testing/trends , Polymorphism, Single Nucleotide/genetics , Precision Medicine/trends , Spain
13.
Eur J Endocrinol ; 177(2): 175-186, 2017 Aug.
Article En | MEDLINE | ID: mdl-28566443

OBJECTIVE: Genetic activation of the insulin signal-transducing kinase AKT2 causes syndromic hypoketotic hypoglycaemia without elevated insulin. Mosaic activating mutations in class 1A phospatidylinositol-3-kinase (PI3K), upstream from AKT2 in insulin signalling, are known to cause segmental overgrowth, but the metabolic consequences have not been systematically reported. We assess the metabolic phenotype of 22 patients with mosaic activating mutations affecting PI3K, thereby providing new insight into the metabolic function of this complex node in insulin signal transduction. METHODS: Three patients with megalencephaly, diffuse asymmetric overgrowth, hypoketotic, hypoinsulinaemic hypoglycaemia and no AKT2 mutation underwent further genetic, clinical and metabolic investigation. Signalling in dermal fibroblasts from one patient and efficacy of the mTOR inhibitor Sirolimus on pathway activation were examined. Finally, the metabolic profile of a cohort of 19 further patients with mosaic activating mutations in PI3K was assessed. RESULTS: In the first three patients, mosaic mutations in PIK3CA (p.Gly118Asp or p.Glu726Lys) or PIK3R2 (p.Gly373Arg) were found. In different tissue samples available from one patient, the PIK3CA p.Glu726Lys mutation was present at burdens from 24% to 42%, with the highest level in the liver. Dermal fibroblasts showed increased basal AKT phosphorylation which was potently suppressed by Sirolimus. Nineteen further patients with mosaic mutations in PIK3CA had neither clinical nor biochemical evidence of hypoglycaemia. CONCLUSIONS: Mosaic mutations activating class 1A PI3K cause severe non-ketotic hypoglycaemia in a subset of patients, with the metabolic phenotype presumably related to the extent of mosaicism within the liver. mTOR or PI3K inhibitors offer the prospect for future therapy.


Class I Phosphatidylinositol 3-Kinases/genetics , Hypoglycemia/genetics , Insulin/genetics , Megalencephaly/genetics , Mosaicism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Child, Preschool , Female , Humans , Hypoglycemia/diagnosis , Hypoglycemia/metabolism , Insulin/metabolism , Male , Megalencephaly/diagnosis , Megalencephaly/metabolism , Phosphatidylinositol 3-Kinases/metabolism
14.
Am J Med Genet A ; 173(3): 601-610, 2017 Mar.
Article En | MEDLINE | ID: mdl-28127875

Hypophosphatasia (HPP) is a rare autosomal dominant or recessive metabolic disorder caused by mutations in the tissue nonspecific alkaline phosphatase gene (ALPL). To date, over 300 different mutations in ALPL have been identified. Disease severity is widely variable with severe forms usually manifesting during perinatal and/or infantile periods while mild forms are sometimes only diagnosed in adulthood or remain undiagnosed. Common clinical features of HPP are defects in bone and tooth mineralization along with the biochemical hallmark of decreased serum alkaline phosphatase activity. The incidence of severe HPP is approximately 1 in 300,000 in Europe and 1 in 100,000 in Canada. We present the clinical and molecular findings of 83 probands and 28 family members, referred for genetic analysis due to a clinical and biochemical suspicion of HPP. Patient referrals included those with isolated low alkaline phosphatase levels and without any additional clinical features, to those with a severe skeletal dysplasia. Thirty-six (43.3%) probands were found to have pathogenic ALPL mutations. Eleven previously unreported mutations were identified, thus adding to the ever increasing list of ALPL mutations. Seven of these eleven were inherited in an autosomal dominant manner while the remaining four were observed in the homozygous state. Thus, this study includes a large number of well-characterized patients with hypophosphatasemia which has permitted us to study the genotype:phenotype correlation. Accurate diagnosis of patients with a clinical suspicion of HPP is crucial as not only is the disease life-threatening but the patients may be offered bone targeted enzymatic replacement therapy. © 2017 Wiley Periodicals, Inc.


Alkaline Phosphatase/genetics , Genetic Association Studies , Hypophosphatasia/diagnosis , Hypophosphatasia/genetics , Phenotype , Adolescent , Adult , Alleles , Amino Acid Substitution , DNA Mutational Analysis , Exons , Female , Genetic Testing , Genotype , Humans , Inheritance Patterns , Male , Middle Aged , Mutation , Severity of Illness Index , Young Adult
15.
Rev. esp. cardiol. (Ed. impr.) ; 69(11): 1011-1019, nov. 2016. graf, tab
Article Es | IBECS | ID: ibc-157506

Introducción y objetivos: Avances recientes en genética han permitido el descubrimiento de nuevos genes relacionados con la hipertensión arterial pulmonar, como TBX4 y KCNK3. El fenotipo y el pronóstico asociado a ellos se han detallado escasamente y se desconoce su papel en la población española. El objetivo de este estudio es caracterizar genotípicamente una cohorte española de pacientes con hipertensión arterial pulmonar idiopática y hereditaria, describiendo el fenotipo y los factores pronósticos asociados a BMPR2 y a los nuevos genes (KCNK3 y TBX4). Métodos: Se seleccionó a 165 pacientes adultos con hipertensión arterial pulmonar: 143 con hipertensión arterial pulmonar idiopática y 22 con hipertensión arterial pulmonar familiar. Se compararon las características basales y la supervivencia libre de eventos entre los distintos subgrupos, se analizaron los factores predictores de mal pronóstico y se llevó a cabo el cribado familiar. Resultados: El estudio genético fue positivo en 16 pacientes con hipertensión arterial pulmonar idiopática (11,10%) y 15 con hipertensión arterial pulmonar familiar (68,18%), y se hallaron 19 mutaciones en BMPR2, 4 en TBX4 y 3 en KCNK3. Se observó mayor supervivencia libre de eventos en las formas asociadas a TBX4 (p < 0,01). El diagnóstico en clases funcionales avanzadas fue el único factor pronóstico en las formas heredables. El cribado de familiares fue positivo en el 37,5%. Conclusiones: En la población española con hipertensión arterial pulmonar puede existir un sustrato genético diferente, con menor proporción de mutaciones en BMPR2. A la vista de nuestros resultados, las formas asociadas a TBX4 podrían conllevar un fenotipo más benigno, y el diagnóstico tardío sería un factor de mal pronóstico en las formas heredables de la enfermedad (AU)


Introduction and objectives: Recent advances in genetics have led to the discovery of new genes associated with pulmonary arterial hypertension, such as TBX4 and KCNK3. The phenotype and prognosis associated with these new genes have been scarcely described and their role in the Spanish population is unknown. The aim of this study was to characterize the genetics of a Spanish cohort of patients with idiopathic and hereditary pulmonary arterial hypertension and to describe the phenotype and prognostic factors associated with BMPR2 and the new genes (KCNK3 and TBX4). Methods: A total of 165 adult patients were screened for BMPR2, KCNK3, and TBX4 mutations, 143 with idiopathic pulmonary arterial hypertension and 22 with hereditary pulmonary arterial hypertension. Baseline characteristics and survival were compared among the different subgroups and predictors of poor outcomes were analyzed. We also performed family screening. Results: The genetic study identified a possibly associated mutation in 11.10% of the idiopathic cases (n = 16) and in 68.18% of the hereditary cases (n = 15). There were 19 mutations in BMPR2, 4 in TBX4, and 3 in KCNK3. The forms associated with TBX4 showed the highest survival rate (P < .01). Advanced functional class at diagnosis was the only factor associated with poor outcomes in the hereditary forms. In the family screening, 37.5% of relatives tested positive. Conclusions: The genetics of pulmonary arterial hypertension in the Spanish population may differ from other populations, with a lower proportion of BMPR2 causative mutations. In our cohort, TBX4-related forms of pulmonary arterial hypertension showed a more benign course and late diagnosis was the only predictor of adverse outcomes in the hereditary forms of the disease (AU)


Humans , Hypertension, Pulmonary/genetics , Molecular Diagnostic Techniques/methods , Mutation/genetics , Genetic Predisposition to Disease , Genetic Testing/methods , Genetic Markers , Genotype , Genetic Diseases, Inborn/genetics , Mass Screening/methods
16.
Am J Med Genet A ; 170(10): 2740-9, 2016 10.
Article En | MEDLINE | ID: mdl-27480579

Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome characterized by an excessive prenatal and postnatal growth, macrosomia, macroglossia, and hemihyperplasia. The molecular basis of this syndrome is complex and heterogeneous, involving genes located at 11p15.5. BWS is correlated with assisted reproductive techniques. BWS in individuals born following assisted reproductive techniques has been found to occur four to nine times higher compared to children with to BWS born after spontaneous conception. Here, we report a series of 187 patients with to BWS born either after assisted reproductive techniques or conceived naturally. Eighty-eight percent of BWS patients born via assisted reproductive techniques had hypomethylation of KCNQ1OT1:TSS-DMR in comparison with 49% for patients with BWS conceived naturally. None of the patients with BWS born via assisted reproductive techniques had hypermethylation of H19/IGF2:IG-DMR, neither CDKN1 C mutations nor patUPD11. We did not find differences in the frequency of multi-locus imprinting disturbances between groups. Patients with BWS born via assisted reproductive techniques had an increased frequency of advanced bone age, congenital heart disease, and decreased frequency of earlobe anomalies but these differences may be explained by the different molecular background compared to those with BWS and spontaneous fertilization. We conclude there is a correlation of the molecular etiology of BWS with the type of conception. © 2016 Wiley Periodicals, Inc.


Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , Genetic Association Studies , Centromere , Chromosomes, Human, Pair 11 , DNA Methylation , Epigenesis, Genetic , Female , Fertilization , Genomic Imprinting , Humans , Infant, Newborn , Male , Phenotype , Registries , Reproductive Techniques, Assisted , Spain , Telomere
17.
Rev Esp Cardiol (Engl Ed) ; 69(11): 1011-1019, 2016 Nov.
Article En, Es | MEDLINE | ID: mdl-27453251

INTRODUCTION AND OBJECTIVES: Recent advances in genetics have led to the discovery of new genes associated with pulmonary arterial hypertension, such as TBX4 and KCNK3. The phenotype and prognosis associated with these new genes have been scarcely described and their role in the Spanish population is unknown. The aim of this study was to characterize the genetics of a Spanish cohort of patients with idiopathic and hereditary pulmonary arterial hypertension and to describe the phenotype and prognostic factors associated with BMPR2 and the new genes (KCNK3 and TBX4). METHODS: A total of 165 adult patients were screened for BMPR2, KCNK3, and TBX4 mutations, 143 with idiopathic pulmonary arterial hypertension and 22 with hereditary pulmonary arterial hypertension. Baseline characteristics and survival were compared among the different subgroups and predictors of poor outcomes were analyzed. We also performed family screening. RESULTS: The genetic study identified a possibly associated mutation in 11.10% of the idiopathic cases (n = 16) and in 68.18% of the hereditary cases (n = 15). There were 19 mutations in BMPR2, 4 in TBX4, and 3 in KCNK3. The forms associated with TBX4 showed the highest survival rate (P < .01). Advanced functional class at diagnosis was the only factor associated with poor outcomes in the hereditary forms. In the family screening, 37.5% of relatives tested positive. CONCLUSIONS: The genetics of pulmonary arterial hypertension in the Spanish population may differ from other populations, with a lower proportion of BMPR2 causative mutations. In our cohort, TBX4-related forms of pulmonary arterial hypertension showed a more benign course and late diagnosis was the only predictor of adverse outcomes in the hereditary forms of the disease.


Bone Morphogenetic Protein Receptors, Type II/genetics , Familial Primary Pulmonary Hypertension/genetics , Nerve Tissue Proteins/genetics , Potassium Channels, Tandem Pore Domain/genetics , T-Box Domain Proteins/genetics , Adult , Familial Primary Pulmonary Hypertension/physiopathology , Female , Forced Expiratory Volume , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Mutation , Phenotype , Prognosis , Pulmonary Diffusing Capacity , Spain , Vascular Resistance , Vital Capacity , Walk Test , White People/genetics , Young Adult
18.
Hum Mutat ; 35(12): 1436-41, 2014 Dec.
Article En | MEDLINE | ID: mdl-25196541

Overgrowth syndromes (OGS) are a group of disorders in which all parameters of growth and physical development are above the mean for age and sex. We evaluated a series of 270 families from the Spanish Overgrowth Syndrome Registry with no known OGS. We identified one de novo deletion and three missense mutations in RNF125 in six patients from four families with overgrowth, macrocephaly, intellectual disability, mild hydrocephaly, hypoglycemia, and inflammatory diseases resembling Sjögren syndrome. RNF125 encodes an E3 ubiquitin ligase and is a novel gene of OGS. Our studies of the RNF125 pathway point to upregulation of RIG-I-IPS1-MDA5 and/or disruption of the PI3K-AKT and interferon signaling pathways as the putative final effectors.


Growth Disorders/genetics , Mutation , Ubiquitin-Protein Ligases/genetics , Female , Growth Disorders/epidemiology , Humans , Male , Pedigree , Registries , Spain/epidemiology , Syndrome
...