Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
ACS Appl Mater Interfaces ; 13(10): 12550-12561, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33656870

RESUMEN

Multifunctional composites that couple high-capacity adsorbents with catalytic nanoparticles (NPs) offer a promising route toward the degradation of organophosphorus pollutants or chemical warfare agents (CWAs). We couple mesoporous TiO2 aerogels with plasmonic Cu nanoparticles (Cu/TiO2) and characterize the degradation of the organophosphorus CWA sarin under both dark and illuminated conditions. Cu/TiO2 aerogels combine high dark degradation rates, which are facilitated by hydrolytically active sites at the Cu||TiO2 interface, with photoenhanced degradation courtesy of semiconducting TiO2 and the surface plasmon resonance (SPR) of the Cu nanoparticles. The TiO2 aerogel provides a high surface area for sarin binding (155 m2 g-1), while the addition of Cu NPs increases the abundance of hydrolytically active OH sites. Degradation is accelerated on TiO2 and Cu/TiO2 aerogels with O2. Under broadband illumination, which excites the TiO2 bandgap and the Cu SPR, sarin degradation accelerates, and the products are more fully mineralized compared to those of the dark reaction. With O2 and broadband illumination, oxidation products are observed on the Cu/TiO2 aerogels as the hydrolysis products subsequently oxidize. In contrast, the photodegradation of sarin on TiO2 is limited by its slow initial hydrolysis, which limits the subsequent photooxidation. Accelerated hydrolysis occurs on Cu/TiO2 aerogels under visible illumination (>480 nm) that excites the Cu SPR but not the TiO2 bandgap, confirming that the Cu SPR excitation contributes to the broadband-driven activity. The high hydrolytic activity of the Cu/TiO2 aerogels combined with the photoactivity upon TiO2 bandgap excitation and Cu SPR excitation is a potent combination of hydrolysis and oxidation that enables the substantial chemical degradation of organophorphorus compounds.

3.
ACS Appl Mater Interfaces ; 13(8): 10500-10512, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33606491

RESUMEN

A strategy is developed to enhance the barrier protection of polyethylene oxide (PEO)-metal-organic framework (MOF) composite films against chemical warfare agent simulants. To achieve enhanced protection, an impermeable high-aspect-ratio filler in the form of Laponite RD (LRD) clay platelets was incorporated into a composite PEO film containing MOF UiO-66-NH2. The inclusion of the platelets aids in mitigating permeation of inert hydrocarbons (octane) and toxic chemicals (2-chloroethyl ethyl sulfide, 2-CEES) of dimensions/chemistry similar to prominent vesicant threats while still maintaining high water vapor transport rates (WVTR). By utilizing small-angle neutron scattering, small-angle X-ray scattering, and wide-angle X-ray scattering, the LRD platelet alignment of the films was determined, and the structure of the films was correlated with performance as a barrier material. Performance of the membranes against toxic chemical threats was assessed using permeation testing of octane and 2-CEES, a common simulant for the vesicant mustard gas, and breathability of the membranes was assessed using WVTR measurements. To assess their robustness, chemical exposure (in situ diffuse reflectance infrared Fourier transform spectroscopy) and mechanical (tensile strength) measurements were also performed. It was demonstrated that the barrier performance of the film upon inclusion of the LRD platelets exceeds that of other MOF-polymer composites found in the literature and that this approach establishes a new path for improving permselective materials for chemical protection applications.

4.
Commun Chem ; 4(1): 2, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36697507

RESUMEN

Gas capture and sequestration are valuable properties of metal-organic frameworks (MOFs) driving tremendous interest in their use as filtration materials for chemical warfare agents. Recently, the Zr-based MOF UiO-67 was shown to effectively adsorb and decompose the nerve-agent simulant, dimethyl methylphosphonate (DMMP). Understanding mechanisms of MOF-agent interaction is challenging due to the need to distinguish between the roles of the MOF framework and its particular sites for the activation and sequestration process. Here, we demonstrate the quantitative tracking of both framework and binding component structures using in situ X-ray total scattering measurements of UiO-67 under DMMP exposure, pair distribution function analysis, and theoretical calculations. The sorption and desorption of DMMP within the pores, association with linker-deficient Zr6 cores, and decomposition to irreversibly bound methyl methylphosphonate were directly observed and analyzed with atomic resolution.

5.
Commun Chem ; 4(1): 33, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36697596

RESUMEN

Bis(2-chloroethyl) sulfide or sulfur mustard (HD) is one of the highest-tonnage chemical warfare agents and one that is highly persistent in the environment. For decontamination, selective oxidation of HD to the substantially less toxic sulfoxide is crucial. We report here a solvent-free, solid, robust catalyst comprising hydrophobic salts of tribromide and nitrate, copper(II) nitrate hydrate, and a solid acid (NafionTM) for selective sulfoxidation using only ambient air at room temperature. This system rapidly removes HD as a neat liquid or a vapor. The mechanisms of these aerobic decontamination reactions are complex, and studies confirm reversible formation of a key intermediate, the bromosulfonium ion, and the role of Cu(II). The latter increases the rate four-fold by increasing the equilibrium concentration of bromosulfonium during turnover. Cu(II) also provides a colorimetric detection capability. Without HD, the solid is green, and with HD, it is brown. Bromine K-edge XANES and EXAFS studies confirm regeneration of tribromide under catalytic conditions. Diffuse reflectance infrared Fourier transform spectroscopy shows absorption of HD vapor and selective conversion to the desired sulfoxide, HDO, at the gas-solid interface.

6.
ACS Appl Mater Interfaces ; 12(52): 58326-58338, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33327718

RESUMEN

Understanding mechanisms of decontamination of chemical warfare agents (CWA) is an area of intense research aimed at developing new filtration materials to protect soldiers and civilians in case of state-sponsored or terrorist attack. In this study, we employed complementary structural, chemical, and dynamic probes and in situ data collection, to elucidate the complex chemistry, capture, and decomposition of the CWA simulant, dimethyl chlorophosphonate (DMCP). Our work reveals key details of the reactive adsorption of DMCP and demonstrates the versatility of zeolitic imidazolate framework (ZIF-8) as a plausible material for CWA capture and decomposition. The in situ synchrotron-based powder X-ray diffraction (PXRD) and pair distribution function (PDF) studies, combined with Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), zinc K-edge X-ray absorption near edge structure (XANES), and Raman spectroscopies, showed that the unique structure, chemical state, and topology of ZIF-8 enable accessibility, adsorption, and hydrolysis of DMCP into the pores and revealed the importance of linker chemistry and Zn2+ sites for nerve agent decomposition. DMCP decontamination and decomposition product(s) formation were observed by thermogravimetric analysis, FT-IR spectroscopy, and phosphorus (P) K-edge XANES studies. Differential PDF analysis indicated that the average structure of ZIF-8 (at the 30 Å scale) remains unchanged after DMCP dosing and provided information on the dynamics of interactions of DMCP with the ZIF-8 framework. Using in situ PXRD and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), we showed that nearly 90% regeneration of the ZIF-8 structure and complete liberation of DMCP and decomposition products occur upon heating.

7.
ACS Appl Mater Interfaces ; 12(13): 14641-14661, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31994872

RESUMEN

The threat of chemical warfare agents (CWAs), assured by their ease of synthesis and effectiveness as a terrorizing weapon, will persist long after the once-tremendous stockpiles in the U.S. and elsewhere are finally destroyed. As such, soldier and civilian protection, battlefield decontamination, and environmental remediation from CWAs remain top national security priorities. New chemical approaches for the fast and complete destruction of CWAs have been an active field of research for many decades, and new technologies have generated immense interest. In particular, our research team and others have shown metal-organic frameworks (MOFs) and polyoxometalates (POMs) to be active for sequestering CWAs and even catalyzing the rapid hydrolysis of agents. In this Forum Article, we highlight recent advancements made in the understanding and evaluation of POMs and Zr-based MOFs as CWA decontamination materials. Specifically, our aim is to bridge the gap between controlled, solution-phase laboratory studies and real-world or battlefield-like conditions by examining agent-material interactions at the gas-solid interface utilizing a multimodal experimental and computational approach. Herein, we report our progress in addressing the following research goals: (1) elucidating molecular-level mechanisms of the adsorption, diffusion, and reaction of CWA and CWA simulants within a series of Zr-based MOFs, such as UiO-66, MOF-808, and NU-1000, and POMs, including Cs8Nb6O19 and (Et2NH2)8[(α-PW11O39Zr(µ-OH)(H2O))2]·7H2O, (2) probing the effects that common ambient gases, such as CO2, SO2, and NO2, have on the efficacy of the MOF and POM materials for CWA destruction, and (3) using CWA simulant results to develop hypotheses for live agent chemistry. Key hypotheses are then tested with targeted live agent studies. Overall, our collaborative effort has provided insight into the fundamental aspects of agent-material interactions and revealed strategies for new catalyst development.

8.
ACS Appl Mater Interfaces ; 12(13): 14721-14738, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31815428

RESUMEN

This Review summarizes the recent progress made in the field of chemical threat reduction by utilizing new in situ analytical techniques and combinations thereof to study multifunctional materials designed for capture and decomposition of nerve gases and their simulants. The emphasis is on the use of in situ experiments that simulate realistic operating conditions (solid-gas interface, ambient pressures and temperatures, time-resolved measurements) and advanced synchrotron methods, such as in situ X-ray absorption and scattering methods, a combination thereof with other complementary measurements (e.g., XPS, Raman, DRIFTS, NMR), and theoretical modeling. The examples presented in this Review range from studies of the adsorption and decomposition of nerve agents and their simulants on Zr-based metal organic frameworks to Nb and Zr-based polyoxometalates and metal (hydro)oxide materials. The approaches employed in these studies ultimately demonstrate how advanced synchrotron-based in situ X-ray absorption spectroscopy and diffraction can be exploited to develop an atomic- level understanding of interfacial binding and reaction of chemical warfare agents, which impacts the development of novel filtration media and other protective materials.

9.
J Phys Chem Lett ; 10(9): 2295-2299, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31002759

RESUMEN

Development of technologies for protection against chemical warfare agents (CWAs) is critically important. Recently, polyoxometalates have attracted attention as potential catalysts for nerve-agent decomposition. Improvement of their effectiveness in real operating conditions requires an atomic-level understanding of CWA decomposition at the gas-solid interface. We investigated decomposition of the nerve agent Sarin and its simulant, dimethyl chlorophosphate (DMCP), by zirconium polytungstate. Using a multimodal approach, we showed that upon DMCP and Sarin exposure the dimeric tungstate undergoes monomerization, making coordinatively unsaturated Zr(IV) centers available, which activate nucleophilic hydrolysis. Further, DMCP is shown to be a good model system of reduced toxicity for studies of CWA deactivation at the gas-solid interface.

10.
ACS Appl Mater Interfaces ; 11(19): 17931-17939, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30945841

RESUMEN

A facile method for the formation of mesoporosity within nonporous zirconium hydr(oxides) (ZrO2/Zr(OH)4) is presented and their detoxifying capabilities against dimethyl chlorophosphate (DMCP) are investigated. Nanoaggregates of ZrO2/Zr(OH)4 appear to be deposited on larger thin flakes of the same material. H2O2 is used to induce surface oxygen vacancies of synthesized ZrO2/Zr(OH)4 and, as a consequence, mesopores with an average diameter of 3.1 nm were formed. A surface area of H2O2-treated ZrO2/Zr(OH)4 was increased by an order of magnitude and shows enhanced reactivity toward DMCP. DRIFTS spectroscopy is employed to assess the reactivity differences between the H2O2-treated and untreated ZrO2/Zr(OH)4. Peaks at 1175 and 1144 cm-1 indicate the presence of asymmetric stretching of the O-P-O moiety within dimethyl phosphonate (DMHP), a decomposition product from DMCP, and a zirconium-bound methoxy group, respectively. It is suggested that the decomposition of DMCP proceeds through the consumption of bridged hydroxyl groups (b-OH) for both the untreated and H2O2-treated samples, as well as an additional hydrolytic decomposition pathway for the H2O2-treated sample.

11.
Inorg Chem ; 57(5): 2797-2803, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29465992

RESUMEN

Analysis of X-ray pair distribution function data has provided a detailed picture of the local structure of amorphous Zr(OH)4 and its thermal decomposition into ZrO2. In the untreated phase, the Zr atoms tend to be coordinated by six or seven oxygen atoms. The Zr centered polyhedra connect to each other primarily by sharing edges, but also with a significant amount of corner sharing, to form two-dimensional sheets in which the Zr are connected to an average of about five other Zr. This local structure is related to the structure of monoclinic ZrO2 and can be derived from it by removing certain Zr neighbors to form sheets and reduce the corner to edge sharing ratio. The maximum correlation length in Zr(OH)4 is about 12 Å. Heating up to 125 °C results in significant water loss but does not alter the network of Zr and bridging O atoms. Additional water loss caused by heating to 250 °C triggers a reorganization into a new type of amorphous phase with a three-dimensional network and a greater number of Zr-Zr neighbors. Further heating to 330 °C causes crystallization into a mixture of tetragonal and monoclinic ZrO2, with the minor tetragonal phase having a smaller average domain size. The tetragonal component vanishes by 900 °C.

12.
ACS Appl Mater Interfaces ; 9(45): 39747-39757, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29053242

RESUMEN

Zirconium hydroxide (Zr(OH)4) has excellent sorption properties and wide-ranging reactivity toward numerous types of chemical warfare agents (CWAs) and toxic industrial chemicals. Under pristine laboratory conditions, the effectiveness of Zr(OH)4 has been attributed to a combination of diverse surface hydroxyl species and defects; however, atmospheric components (e.g., CO2, H2O, etc.) and trace contaminants can form adsorbates with potentially detrimental impact to the chemical reactivity of Zr(OH)4. Here, we report the hydrolysis of a CWA simulant, dimethyl methylphosphonate (DMMP) on Zr(OH)4 determined by gas chromatography-mass spectrometry and in situ attenuated total reflectance Fourier transform infrared spectroscopy under ambient conditions. DMMP dosing on Zr(OH)4 formed methyl methylphosphonate and methoxy degradation products on free bridging and terminal hydroxyl sites of Zr(OH)4 under all evaluated environmental conditions. CO2 dosing on Zr(OH)4 formed adsorbed (bi)carbonates and interfacial carbonate complexes with relative stability dependent on CO2 and H2O partial pressures. High concentrations of CO2 reduced DMMP decomposition kinetics by occupying Zr(OH)4 active sites with carbonaceous adsorbates. Elevated humidity promoted hydrolysis of adsorbed DMMP on Zr(OH)4 to produce methanol and regenerated free hydroxyl species. Hydrolysis of DMMP by Zr(OH)4 occurred under all conditions evaluated, demonstrating promise for chemical decontamination under diverse, real-world conditions.

13.
Sci Rep ; 7(1): 773, 2017 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-28396583

RESUMEN

Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs8[Nb6O19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb6O19]8- polyanion, its Cs+ counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general base (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs8[Nb6O19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.

14.
J Am Chem Soc ; 139(2): 599-602, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28038315

RESUMEN

Zr-based metal organic frameworks (MOFs) have been recently shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. We report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination of DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. These experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.

15.
Angew Chem Int Ed Engl ; 55(26): 7403-7, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27061963

RESUMEN

A wide range of chemical warfare agents and their simulants are catalytically decontaminated by a new one-dimensional polymeric polyniobate (P-PONb), K12 [Ti2 O2 ][GeNb12 O40 ]⋅19 H2 O (KGeNb) under mild conditions and in the dark. Uniquely, KGeNb facilitates hydrolysis of nerve agents Sarin (GB) and Soman (GD) (and their less reactive simulants, dimethyl methylphosphonate (DMMP)) as well as mustard (HD) in both liquid and gas phases at ambient temperature and in the absence of neutralizing bases or illumination. Three lines of evidence establish that KGeNb removes DMMP, and thus likely GB/GD, by general base catalysis: a) the k(H2 O)/k(D2 O) solvent isotope effect is 1.4; b) the rate law (hydrolysis at the same pH depends on the amount of P-PONb present); and c) hydroxide is far less active against the above simulants at the same pH than the P-PONbs themselves, a critical control experiment.

16.
Angew Chem Int Ed Engl ; 55(21): 6235-8, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27072136

RESUMEN

Here we discuss the removal of nitrogen dioxide, an important toxic industrial chemical and pollutant, from air using the MOF UiO-66-NH2 . The amine group is found to substantially aid in the removal, resulting in unprecedented removal capacities upwards of 1.4 g of NO2 /g of MOF. Furthermore, whereas NO2 typically generates substantial quantities of NO on sorbents, the amount generated by UiO-66-NH2 is significantly reduced. Of particular significance is the formation of a diazonium ion on the aromatic ring of the MOF, and the potential reduction of NO2 to molecular nitrogen.

17.
ACS Appl Mater Interfaces ; 7(12): 6402-5, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25775244

RESUMEN

Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

18.
Rev Sci Instrum ; 85(1): 014101, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24517783

RESUMEN

A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.


Asunto(s)
Sustancias para la Guerra Química/química , Química/instrumentación , Diseño de Equipo , Nanopartículas/química , Seguridad , Dióxido de Silicio/química , Propiedades de Superficie , Vacio , Volatilización
19.
J Phys Chem Lett ; 5(8): 1393-9, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-26269985

RESUMEN

Sarin and soman are warfare nerve agents that represent some of the most toxic compounds ever synthesized. The extreme risk in handling such molecules has, until now, precluded detailed research into the surface chemistry of agents. We have developed a surface science approach to explore the fundamental nature of hydrogen bonding forces between these agents and a hydroxylated surface. Infrared spectroscopy revealed that both agents adsorb to amorphous silica through the formation of surprisingly strong hydrogen-bonding interactions with primarily isolated silanol groups (SiOH). Comparisons with previous theoretical results reveal that this bonding occurs almost exclusively through the phosphoryl oxygen (P═O) of the agent. Temperature-programmed desorption experiments determined that the activation energy for hydrogen bond rupture and desorption of sarin and soman was 50 ± 2 and 52 ± 2 kJ/mol, respectively. Together with results from previous studies involving other phosphoryl-containing molecules, we have constructed a detailed understanding of the structure-function relationship for nerve agent hydrogen bonding at the gas-surface interface.

20.
Phys Chem Chem Phys ; 11(47): 11171-83, 2009 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-20024386

RESUMEN

Adsorption of formate on oxide surfaces plays a role in water-gas shift (WGS) and other reactions related to H(2) production and CO(2) utilization. CeO(2) is of particular interest because its reducibility affects the redox of organic molecules. In this work, the adsorption and thermal evolution of formic acid and formate on highly ordered films of fully oxidized CeO(2)(111) and highly reduced CeO(x)(111) surfaces have been studied using reflection absorption infrared spectroscopy (RAIRS) under ultra-high vacuum conditions, and the experimental results are combined with density functional theory (DFT) calculations to probe the identity, symmetry, and bonding of the surface intermediates. Disordered ice, ordered alpha-polymorph and molecular formic acid bonded through the carbonyl are observed at low temperatures. By 250 K, desorption and deprotonation lead to formate coexisting with hydroxyl on CeO(2)(111), identified to be a bridging bidentate formate species that is coordinated to Ce cations in nearly C(2v) symmetry and interacting strongly with neighboring H. Changes in the spectra at higher temperatures are consistent with additional tilting of the formate, resulting in C(s)(2) or lower symmetry. This change in bonding is caused primarily by interaction with oxygen vacancies introduced by water desorption at 300 K. On reduced CeO(x), multiple low-symmetry formate states exist likewise due to interactions with oxygen vacancies. Isotopic studies demonstrate that the formyl hydrogen does not contribute to H incorporated in hydroxyl on the surface, and that both formate oxygen atoms may exchange with lattice oxygen at 400 K. The combined experimental and theoretical results thus provide important insights on the surface reaction pathways of formic acid on ceria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...