Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 2: 295, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396575

RESUMEN

Graphics are becoming increasingly important for scientists to effectively communicate their findings to broad audiences, but most researchers lack expertise in visual media. We suggest collaboration between scientists and graphic designers as a way forward and discuss the results of a pilot project to test this type of collaboration.


Asunto(s)
Recursos Audiovisuales , Investigación Biomédica , Conducta Cooperativa , Presentación de Datos , Difusión de la Información , Comunicación Interdisciplinaria , Investigadores , Actitud del Personal de Salud , Gráficos por Computador , Humanos , Percepción Visual
2.
G3 (Bethesda) ; 9(4): 1231-1247, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30796086

RESUMEN

Hyperspectral reflectance phenotyping and genomic selection are two emerging technologies that have the potential to increase plant breeding efficiency by improving prediction accuracy for grain yield. Hyperspectral cameras quantify canopy reflectance across a wide range of wavelengths that are associated with numerous biophysical and biochemical processes in plants. Genomic selection models utilize genome-wide marker or pedigree information to predict the genetic values of breeding lines. In this study, we propose a multi-kernel GBLUP approach to genomic selection that uses genomic marker-, pedigree-, and hyperspectral reflectance-derived relationship matrices to model the genetic main effects and genotype × environment (G × E) interactions across environments within a bread wheat (Triticum aestivum L.) breeding program. We utilized an airplane equipped with a hyperspectral camera to phenotype five differentially managed treatments of the yield trials conducted by the Bread Wheat Improvement Program of the International Maize and Wheat Improvement Center (CIMMYT) at Ciudad Obregón, México over four breeding cycles. We observed that single-kernel models using hyperspectral reflectance-derived relationship matrices performed similarly or superior to marker- and pedigree-based genomic selection models when predicting within and across environments. Multi-kernel models combining marker/pedigree information with hyperspectral reflectance phentoypes had the highest prediction accuracies; however, improvements in accuracy over marker- and pedigree-based models were marginal when correcting for days to heading. Our results demonstrate the potential of using hyperspectral imaging to predict grain yield within a multi-environment context and also support further studies on the integration of hyperspectral reflectance phenotyping into breeding programs.


Asunto(s)
Fitomejoramiento/métodos , Triticum/genética , Interacción Gen-Ambiente , Marcadores Genéticos , Genoma de Planta , Genotipo , México , Fenotipo , Selección Genética , Triticum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA