Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8528, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135683

RESUMEN

Multifunctional platforms that can dynamically modulate their color and appearance have attracted attention for applications as varied as displays, signaling, camouflage, anti-counterfeiting, sensing, biomedical imaging, energy conservation, and robotics. Within this context, the development of camouflage systems with tunable spectroscopic and fluorescent properties that span the ultraviolet, visible, and near-infrared spectral regions has remained exceedingly challenging because of frequently competing materials and device design requirements. Herein, we draw inspiration from the unique blue rings of the Hapalochlaena lunulata octopus for the development of deception and signaling systems that resolve these critical challenges. As the active material, our actuator-type systems incorporate a readily-prepared and easily-processable nonacene-like molecule with an ambient-atmosphere stability that exceeds the state-of-the-art for comparable acenes by orders of magnitude. Devices from this active material feature a powerful and unique combination of advantages, including straightforward benchtop fabrication, competitive baseline performance metrics, robustness during cycling with the capacity for autonomous self-repair, and multiple dynamic multispectral operating modes. When considered together, the described exciting discoveries point to new scientific and technological opportunities in the areas of functional organic materials, reconfigurable soft actuators, and adaptive photonic systems.

2.
APL Bioeng ; 7(4): 046111, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37941766

RESUMEN

Wearable thermoregulatory technologies have attracted widespread attention because of their potential for impacting individual physiological comfort and for reducing building energy consumption. Within this context, the study of materials and systems that can merge the advantageous characteristics of both active and passive operating modes has proven particularly attractive. Accordingly, our laboratory has drawn inspiration from the appearance-changing skin of Loliginidae (inshore squids) for the introduction of a unique class of dynamic thermoregulatory composite materials with outstanding figures of merit. Herein, we demonstrate a straightforward approach for experimentally controlling and computationally predicting the adaptive infrared properties of such bioinspired composites, thereby enabling the development and validation of robust structure-function relationships for the composites. Our findings may help unlock the potential of not only the described materials but also comparable systems for applications as varied as thermoregulatory wearables, food packaging, infrared camouflage, soft robotics, and biomedical sensing.

3.
iScience ; 26(7): 106854, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37519901

RESUMEN

Cephalopods (e.g., squids, octopuses, and cuttlefishes) possess remarkable dynamic camouflage abilities and therefore have emerged as powerful sources of inspiration for the engineering of dynamic optical technologies. Within this context, we have focused on the development of engineered living systems that can emulate the tunable optical characteristics of some squid skin cells. Herein, we expand our ability to controllably incorporate reflectin-based structures within mammalian cells via genetic engineering methods, and demonstrate that such structures can facilitate holotomographic and standard microscopy imaging of the cells. Moreover, we show that the reflectin-based structures within our cells can be reconfigured with a straightforward chemical stimulus, and we quantify the stimulus-induced changes observed for the structures at the single cell level. The reported findings may enable a better understanding of the color- and appearance-changing capabilities of some cephalopod skin cells and could afford opportunities for reflectins as molecular probes in the fields of cell biology and biomedical optics.

4.
ACS Biomater Sci Eng ; 9(2): 978-990, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36692450

RESUMEN

The fascination with the optical properties of naturally occurring systems has been driven in part by nature's ability to produce a diverse palette of vibrant colors from a relatively small number of common structural motifs. Within this context, some cephalopod species have evolved skin cells called iridophores and leucophores whose constituent ultrastructures reflect light in different ways but are composed of the same high refractive index material─a protein called reflectin. Although such natural optical systems have attracted much research interest, measuring the refractive indices of biomaterial-based structures across multiple different environments and establishing theoretical frameworks for accurately describing the obtained refractive index values has proven challenging. Herein, we employ a synergistic combination of experimental and computational methodologies to systematically map the three-dimensional refractive index distributions of model self-assembled reflectin-based structures both in vivo and in vitro. When considered together, our findings may improve understanding of squid skin cell functionality, augment existing methods for characterizing protein-based optical materials, and expand the utility of emerging holotomographic microscopy techniques.


Asunto(s)
Decapodiformes , Nanoestructuras , Animales , Decapodiformes/química , Refractometría , Proteínas/química , Materiales Biocompatibles
5.
ACS Nano ; 15(11): 17299-17309, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34633175

RESUMEN

Wrinkled surfaces and materials are found throughout the natural world in various plants and animals and are known to improve the performance of emerging optical and electrical technologies. Despite much progress, the reversible post-fabrication tuning of wrinkle sizes and geometries across multiple length scales has remained relatively challenging for some materials, and the development of comprehensive structure-function relationships for optically active wrinkled surfaces has often proven difficult. Herein, by drawing inspiration from natural cephalopod skin and leveraging methodologies established for artificial adaptive infrared platforms, we engineer systems with hierarchically reconfigurable wrinkled surface morphologies and dynamically tunable visible-to-infrared spectroscopic properties. Specifically, we demonstrate architectures for which mechanical actuation changes the surface morphological characteristics; modulates the reflectance, transmittance, and absorptance across a broad spectral window; controls the specular-to-diffuse reflectance ratios; and alters the visible and thermal appearances. Moreover, we demonstrate the incorporation of these architectures into analogous electrically actuated appearance-changing devices that feature competitive figures of merit, such as reasonable maximum areal strains, rapid response times, and good stabilities upon repeated actuation. Overall, our findings constitute another step forward in the continued development of cephalopod-inspired light- and heat-manipulating systems and may facilitate advanced applications in the areas of sensing, electronics, optics, soft robotics, and thermal management.


Asunto(s)
Cefalópodos , Robótica , Animales , Electrónica , Óptica y Fotónica , Visión Ocular
6.
ACS Appl Mater Interfaces ; 13(18): 20938-20946, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33938723

RESUMEN

Protein- and peptide-based proton conductors have been extensively studied because of their important roles in biological processes and established potential for bioelectronic device applications. However, despite much progress, the demonstration of long-range proton transport for such materials has remained relatively rare. Herein, we fabricate, electrically interrogate, and physically characterize films from a reflectin-derived polypeptide. The electrical measurements indicate that device-integrated films exhibit proton conductivities with values of ∼0.4 mS/cm and sustain proton transport over distances of ∼1 mm. The accompanying physical characterization indicates that the polypeptide possesses characteristics analogous to those of the parent protein class and furnishes insight into the relationship between the polypeptide's electrical functionality and structure in the solid state. When considered together, our findings hold significance for the continued development and engineering of not only reflectin-based materials but also other bioinspired proton conductors.


Asunto(s)
Péptidos/química , Protones , Fenómenos Bioquímicos , Conductividad Eléctrica , Transporte Iónico , Espectroscopía de Resonancia Magnética/métodos , Espectroscopía Infrarroja por Transformada de Fourier
7.
RSC Adv ; 11(23): 13722-13730, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35423954

RESUMEN

Quinolines and quinoline-containing macromolecules are renowned for their valuable biological activities and excellent materials properties. Herein, we validate a general strategy for the synthesis of chloro-containing quinoline, benzoquinoline and polybenzoquinoline variants via the aza-Diels-Alder reaction. The described findings could be ultimately implemented in other synthetic pathways and may open new opportunities for analogous quinoline-derived materials.

8.
Proc Natl Acad Sci U S A ; 117(52): 32891-32901, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33323484

RESUMEN

Naturally occurring and recombinant protein-based materials are frequently employed for the study of fundamental biological processes and are often leveraged for applications in areas as diverse as electronics, optics, bioengineering, medicine, and even fashion. Within this context, unique structural proteins known as reflectins have recently attracted substantial attention due to their key roles in the fascinating color-changing capabilities of cephalopods and their technological potential as biophotonic and bioelectronic materials. However, progress toward understanding reflectins has been hindered by their atypical aromatic and charged residue-enriched sequences, extreme sensitivities to subtle changes in environmental conditions, and well-known propensities for aggregation. Herein, we elucidate the structure of a reflectin variant at the molecular level, demonstrate a straightforward mechanical agitation-based methodology for controlling this variant's hierarchical assembly, and establish a direct correlation between the protein's structural characteristics and intrinsic optical properties. Altogether, our findings address multiple challenges associated with the development of reflectins as materials, furnish molecular-level insight into the mechanistic underpinnings of cephalopod skin cells' color-changing functionalities, and may inform new research directions across biochemistry, cellular biology, bioengineering, and optics.

9.
Nat Commun ; 11(1): 2708, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488070

RESUMEN

Although many animals have evolved intrinsic transparency for the purpose of concealment, the development of dynamic, that is, controllable and reversible, transparency for living human cells and tissues has remained elusive to date. Here, by drawing inspiration from the structures and functionalities of adaptive cephalopod skin cells, we design and engineer human cells that contain reconfigurable protein-based photonic architectures and, as a result, possess tunable transparency-changing and light-scattering capabilities. Our findings may lead to the development of unique biophotonic tools for applications in materials science and bioengineering and may also facilitate an improved understanding of a wide range of biological systems.


Asunto(s)
Ingeniería Celular/métodos , Cefalópodos , Óptica y Fotónica , Animales , Técnicas de Cultivo de Célula , Femenino , Ingeniería Genética , Células HEK293 , Humanos , Proteínas/química , Piel , Biología Sintética/métodos
10.
Adv Mater ; 32(16): e1905717, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32128911

RESUMEN

Soft, mechanically deformable materials and systems that can, on demand, manipulate light propagation within both the visible and infrared (IR) regions of the electromagnetic spectrum are desirable for applications that include sensing, optoelectronics, robotics, energy conservation, and thermal management. However, the development of such technologies remains exceptionally difficult, with relatively few examples reported to date. Herein, this challenge is addressed by engineering cephalopod-inspired adaptive camouflage platforms with multispectral functionality. First, stretchable copolymer membranes that feature outstanding unstrained protonic conductivities of up to ≈90 mS cm-1 , demonstrate increases of ≈80% in their conductivities at strains of 200%, and exhibit no loss in electrical performance even under extreme elongations of 500% are described. Next, the membranes are used for the fabrication of mechanically and electrically actuated camouflage devices that function over an unprecedented spectral window; can simultaneously modulate their visible and IR specular-to-diffuse transmittance ratios by >3000-fold and >4-fold, respectively; feature rapid response times of ≈0.6 s; and exhibit good performance after repeated actuation. These findings may afford new scientific and technological opportunities not only for adaptive optics and photonics but also for any platform that can benefit from simultaneously controlling visible light and heat.

11.
J Phys Chem A ; 124(16): 3055-3063, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32049528

RESUMEN

π-stacked organic electronic materials are tunable light absorbers with many potential applications in optoelectronics. The optical properties of such molecules are highly dependent on the nature and energy of electron-hole pairs or excitons formed upon light absorption, which in turn are determined by intra- and intermolecular electronic and vibrational excitations. Here, we present a first-principles approach for describing the optical spectrum of stacked organic molecules with strong vibronic coupling. For stacked perylene tetracarboxylic acid diimides, we describe optical excitations by using the time-dependent density functional theory with a Franck-Condon Herzberg-Teller approximation of vibronic effects and validate our approach with comparison to experimental ultraviolet-visible (UV-vis) absorption measurements of solvated model systems. We determine that for larger macromolecules, unlike for single molecules, the sampling of the ground-state potential energy surface significantly influences the optical absorption spectrum. We account for this effect by applying our analysis to ∼100 structures extracted from equilibrated molecular dynamics simulations and averaging the optical spectrum over the entire ensemble. Additionally, we demonstrate that intermolecular electronic coupling within the stacks results in multiple low-energy electronically excited states that all contribute to the optical spectrum. This study provides a computationally feasible recipe for describing the spectroscopic properties of stacked organic chromophores via first-principles density functional theory.

12.
ACS Biomater Sci Eng ; 6(3): 1311-1320, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33455403

RESUMEN

Stem cells have attracted significant attention due to their regenerative capabilities and their potential for the treatment of disease. Consequently, significant research effort has focused on the development of protein- and polypeptide-based materials as stem cell substrates and scaffolds. Here, we explore the ability of reflectin, a cephalopod structural protein, to support the growth of murine neural stem/progenitor cells (mNSPCs). We observe that the binding, growth, and differentiation of mNSPCs on reflectin films is comparable to that on more established protein-based materials. Moreover, we find that heparin selectively inhibits the adhesion of mNSPCs on reflectin, affording spatial control of cell growth and leading to a >30-fold change in cell density on patterned substrates. The described findings highlight the potential utility of reflectin as a stem cell culture material.


Asunto(s)
Cefalópodos , Células-Madre Neurales , Animales , Diferenciación Celular , Proliferación Celular , Ratones , Proteínas
13.
Nat Commun ; 10(1): 1947, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036806

RESUMEN

Effective thermal management is critical for the operation of many modern technologies, such as electronic circuits, smart clothing, and building environment control systems. By leveraging the static infrared-reflecting design of the space blanket and drawing inspiration from the dynamic color-changing ability of squid skin, we have developed a composite material with tunable thermoregulatory properties. Our material demonstrates an on/off switching ratio of ~25 for the transmittance, regulates a heat flux of ~36 W/m2 with an estimated mechanical power input of ~3 W/m2, and features a dynamic environmental setpoint temperature window of ~8 °C. Moreover, the composite can manage one fourth of the metabolic heat flux expected for a sedentary individual and can also modulate localized changes in a wearer's body temperature by nearly 10-fold. Due to such functionality and associated figures of merit, our material may substantially reduce building energy consumption upon widespread deployment and adoption.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Animales , Temperatura Corporal/fisiología , Decapodiformes , Calor , Humanos , Masculino , Temperatura Cutánea/fisiología , Temperatura
14.
Chempluschem ; 84(4): 416-419, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31939213

RESUMEN

DNA has long been viewed as a promising material for nanoscale electronics, in part due to its well-ordered arrangement of stacked, pi-conjugated base pairs. Within this context, a number of studies have investigated how structural changes, backbone modifications, or artificial base substitutions affect the conductivity of DNA. Herein, we present a comparative study of the electrical properties of both well-matched and perylene-3,4,9,10-tetracarboxylic diimide (PTCDI)-containing DNA molecular wires that bridge nanoscale gold electrodes. By performing current-voltage measurements for such devices, we find that the incorporation of PTCDI DNA base surrogates within our macromolecular constructs leads to an approximately 6-fold enhancement in the observed current levels. Together, these findings suggest that PTCDI DNA base surrogates may enable the preparation of designer DNA-based nanoscale electronic components.


Asunto(s)
ADN/química , Imidas/química , Perileno/análogos & derivados , Emparejamiento Base , Electrodos , Electrónica , Perileno/química
15.
Bioinspir Biomim ; 13(4): 045001, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29799434

RESUMEN

Cephalopods possess unrivaled camouflage and signaling abilities that are enabled by their sophisticated skin, wherein multiple layers contain chromatophore pigment cells (as part of larger chromatophore organs) and different types of reflective cells called iridocytes and leucophores. The optical functionality of these cells (and thus cephalopod skin) critically relies upon subcellular structures partially composed of unusual structural proteins known as reflectins. Herein, we highlight studies that have investigated reflectins as materials within the context of color-changing coatings. We in turn discuss these proteins' multi-faceted properties, associated challenges, and future potential. Through our presentation of selected case studies, we hope to stimulate additional dialogue and spur further research on photonic technologies based on and inspired by reflectins.


Asunto(s)
Mimetismo Biológico/fisiología , Cefalópodos/química , Cefalópodos/fisiología , Pigmentación de la Piel/fisiología , Secuencia de Aminoácidos , Animales , Mimetismo Biológico/genética , Materiales Biomiméticos/química , Biomimética , Cefalópodos/genética , Cromatóforos/clasificación , Cromatóforos/fisiología , Color , Decapodiformes/química , Decapodiformes/genética , Decapodiformes/fisiología , Fenómenos Ópticos , Pigmentos Biológicos/química , Pigmentos Biológicos/genética , Pigmentos Biológicos/fisiología , Proteínas/química , Proteínas/genética , Pigmentación de la Piel/genética
16.
Adv Mater ; 30(19): e1704917, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29656448

RESUMEN

Cephalopods (e.g., squid, octopuses, and cuttlefish) have long fascinated scientists and the general public alike due to their complex behavioral characteristics and remarkable camouflage abilities. As such, these animals are explored as model systems in neuroscience and represent a well-known commercial resource. Herein, selected literature examples related to the electrical properties of cephalopod-derived biopolymers (eumelanins, chitosans, and reflectins) and to the use of these materials in voltage-gated devices (i.e., transistors) are highlighted. Moreover, some potential future directions and challenges in this area are described, with the aim of inspiring additional research effort on ionic and protonic transistors from cephalopod-derived biopolymers.

17.
Science ; 359(6383): 1495-1500, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29599237

RESUMEN

Materials and systems that statically reflect radiation in the infrared region of the electromagnetic spectrum underpin the performance of many entrenched technologies, including building insulation, energy-conserving windows, spacecraft components, electronics shielding, container packaging, protective clothing, and camouflage platforms. The development of their adaptive variants, in which the infrared-reflecting properties dynamically change in response to external stimuli, has emerged as an important unmet scientific challenge. By drawing inspiration from cephalopod skin, we developed adaptive infrared-reflecting platforms that feature a simple actuation mechanism, low working temperature, tunable spectral range, weak angular dependence, fast response, stability to repeated cycling, amenability to patterning and multiplexing, autonomous operation, robust mechanical properties, and straightforward manufacturability. Our findings may open opportunities for infrared camouflage and other technologies that regulate infrared radiation.

18.
Org Lett ; 20(3): 502-505, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29364681

RESUMEN

This study describes the synthesis of modular diquinolineanthracene and polydiquinolineanthracene derivatives. The reported facile and scalable aza-Diels-Alder-based approach requires mild conditions, proceeds in two steps, uses commercially available starting materials, and accommodates varying functionalities. Given the known utility of the acene and quinoline motifs, the synthesized molecules and polymers hold promise for organic electronics applications.

19.
Phys Biol ; 15(3): 031002, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29205173

RESUMEN

This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.


Asunto(s)
Comunicación Celular/fisiología , Polímeros/química , Semiconductores , Propiedades de Superficie
20.
Angew Chem Int Ed Engl ; 55(46): 14267-14271, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27714900

RESUMEN

Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA-like molecular wires. We determine that the rate of electron transfer through these constructs is independent of their length and propose a plausible mechanism to explain our findings. The reported approach holds relevance for the development of high-performance molecular electronic components and the fundamental study of charge transport phenomena in organic semiconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...