Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
2.
Front Neurol ; 12: 656342, 2021.
Article En | MEDLINE | ID: mdl-34421783

Background: Most research in genomics of Parkinson's disease (PD) has been done in subjects of European ancestry, leading to sampling bias and leaving Latin American populations underrepresented. We sought to clinically characterize PD patients of Costa Rican origin and to sequence familial PD and atypical parkinsonism-associated genes in cases and controls. Methods: We enrolled 118 PD patients with 97 unrelated controls. Collected information included demographics, exposure to risk and protective factors, and motor and cognitive assessments. We sequenced coding and untranslated regions in familial PD and atypical parkinsonism-associated genes including GBA, SNCA, VPS35, LRRK2, GCH1, PRKN, PINK1, DJ-1, VPS13C, and ATP13A2. Results: Mean age of PD probands was 62.12 ± 13.51 years; 57.6% were male. The frequency of risk and protective factors averaged ~45%. Physical activity significantly correlated with better motor performance despite years of disease. Increased years of education were significantly associated with better cognitive function, whereas hallucinations, falls, mood disorders, and coffee consumption correlated with worse cognitive performance. We did not identify an association between tested genes and PD or any damaging homozygous or compound heterozygous variants. Rare variants in LRRK2 were nominally associated with PD; six were located between amino acids p.1620 and 1623 in the C-terminal-of-ROC (COR) domain of Lrrk2. Non-synonymous GBA variants (p.T369M, p.N370S, and p.L444P) were identified in three healthy individuals. One PD patient carried a pathogenic GCH1 variant, p.K224R. Discussion: This is the first study that describes sociodemographics, risk factors, clinical presentation, and genetics of Costa Rican patients with PD, adding information to genomics research in a Latino population.

3.
Acta Neuropathol ; 142(3): 475-494, 2021 09.
Article En | MEDLINE | ID: mdl-34125248

Heterozygous gain-of-kinase function variants in LRRK2 (leucine-rich repeat kinase 2) cause 1-2% of all cases of Parkinson's disease (PD) albeit with incomplete and age-dependent penetrance. All pathogenic LRRK2 mutations reside within the two catalytic domains of LRRK2-either in its kinase domain (e.g. G2019S) with modest effect or its ROC-COR GTPase domain (e.g. R1441G/H) with large effect on LRRK2 kinase activity. We have previously reported assays to interrogate LRRK2 kinase pathway activity in human bio-samples measuring phosphorylation of its endogenous substrate Rab10, that mirrors LRRK2 kinase activation status. Here, we isolated neutrophils from fresh peripheral blood from 101 participants including 42 LRRK2 mutation carriers (21 with the G2019S and 21 with the R1441G mutations), 27 patients with idiopathic PD, and 32 controls. Using a dual approach, LRRK2 dependent Rab10 phosphorylation at Threonine 73 (pRab10Thr73) was measured by quantitative multiplexed immunoblotting for pRab10Thr73/total Rab10 as well as targeted mass-spectrometry for absolute pRab10Thr73 occupancy. We found a significant over fourfold increase in pRab10Thr73 phosphorylation in carriers of the LRRK2 R1441G mutation irrespective of clinical disease status. The effect of the LRRK2 G2019S mutation did not reach statistical significance. Furthermore, we show that LRRK2 phosphorylation at Serine 935 is not a marker for LRRK2 kinase activity in human neutrophils. When analysing pRab10Thr73 phosphorylation in post-mortem brain samples, we observed overall high variability irrespective of clinical and LRRK2 mutation status and attributed this mainly to the adverse effect of the peri- and post-mortem period on the stability of posttranslational modifications such as protein phosphorylation. Overall, in vivo LRRK2 dependent pRab10Thr73 phosphorylation in human peripheral blood neutrophils is a specific, robust and promising biomarker for significant LRRK2 kinase hyperactivation, as with the LRRK2 R1441G mutation. Additional readouts and/or assays may be needed to increase sensitivity to detect modest LRRK2 kinase activation, as with the LRRK2 G2019S mutation. Our assays could be useful for patient stratification and target engagement studies for LRRK2 kinase inhibitors.


Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation/genetics , Neutrophils/metabolism , rab GTP-Binding Proteins/genetics , Adult , Aged , Aged, 80 and over , Autopsy , Biomarkers , Female , Heterozygote , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Male , Middle Aged , Parkinson Disease/genetics , Parkinson Disease/pathology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational
4.
Hum Mol Genet ; 11(9): 1119-28, 2002 May 01.
Article En | MEDLINE | ID: mdl-11978770

Autosomal dominant lateral temporal epilepsy (EPT; OMIM 600512) is a form of epilepsy characterized by partial seizures, usually preceded by auditory signs. The gene for this disorder has been mapped by linkage studies to chromosomal region 10q24. Here we show that mutations in the LGI1 gene segregate with EPT in two families affected by this disorder. Both mutations introduce premature stop codons and thus prevent the production of the full-length protein from the affected allele. By immunohistochemical studies, we demonstrate that the LGI1 protein, which contains several leucine-rich repeats, is expressed ubiquitously in the neuronal cell compartment of the brain. Moreover, we provide evidence for genetic heterogeneity within this disorder, since several other families with a phenotype consistent with this type of epilepsy lack mutations in the LGI1 gene.


Chromosomes, Human, Pair 10/genetics , Epilepsy, Temporal Lobe/genetics , Mutation , Proteins/genetics , Alternative Splicing , Amino Acid Sequence , Animals , Base Sequence , Blotting, Northern , Brain/cytology , Brain/metabolism , DNA Primers/chemistry , Female , Humans , Immunoenzyme Techniques , Intracellular Signaling Peptides and Proteins , Male , Molecular Sequence Data , Pedigree , Rabbits , Repetitive Sequences, Amino Acid , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
...