Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 425, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223652

RESUMEN

BACKGROUND: Increased cancer stem cell (CSC) content and SOX2 overexpression are common features in the development of resistance to therapy in hormone-dependent breast cancer, which remains an important clinical challenge. SOX2 has potential as biomarker of resistance to treatment and as therapeutic target, but targeting transcription factors is also challenging. Here, we examine the potential inhibitory effect of different polyoxometalate (POM) derivatives on SOX2 transcription factor in tamoxifen-resistant breast cancer cells. METHODS: Various POM derivatives were synthesised and characterised by infrared spectra, powder X-ray diffraction pattern and nuclear magnetic resonance spectroscopy. Estrogen receptor (ER) positive breast cancer cells, and their counterparts, which have developed resistance to the hormone therapy tamoxifen, were treated with POMs and their consequences assessed by gel retardation and chromatin immunoprecipitation to determine SOX2 binding to DNA. Effects on proliferation, migration, invasion and tumorigenicity were monitored and quantified using microscopy, clone formation, transwell, wound healing assays, flow cytometry and in vivo chick chorioallantoic membrane (CAM) models. Generation of lentiviral stable gene silencing and gene knock-out using CRISPR-Cas9 genome editing were applied to validate the inhibitory effects of the selected POM. Cancer stem cell subpopulations were quantified by mammosphere formation assays, ALDEFLUOR activity and CD44/CD24 stainings. Flow cytometry and western blotting were used to measure reactive oxygen species (ROS) and apoptosis. RESULTS: POMs blocked in vitro binding activity of endogenous SOX2. [P2W18O62]6- (PW) Wells-Dawson-type anion was the most effective at inhibiting proliferation in various cell line models of tamoxifen resistance. 10 µM PW also reduced cancer cell migration and invasion, as well as SNAI2 expression levels. Treatment of tamoxifen-resistant cells with PW impaired tumour formation by reducing CSC content, in a SOX2-dependent manner, which led to stem cell depletion in vivo. Mechanistically, PW induced formation of reactive oxygen species (ROS) and inhibited Bcl-2, leading to the death of tamoxifen-resistant cells. PW-treated tamoxifen-resistant cells showed restored sensitivity to tamoxifen. CONCLUSIONS: Together, these observations highlight the potential use of PW as a SOX2 inhibitor and the therapeutic relevance of targeting SOX2 to treat tamoxifen-resistant breast cancer.


Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Factores de Transcripción SOXB1 , Tamoxifeno , Compuestos de Tungsteno , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Tamoxifeno/farmacología , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Compuestos de Tungsteno/farmacología , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Línea Celular Tumoral , Animales
2.
J Cell Sci ; 136(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36621522

RESUMEN

Wnt signalling has been implicated as a driver of tumour cell metastasis, but less is known about which branches of Wnt signalling are involved and when they act in the metastatic cascade. Here, using a unique intravital imaging platform and fluorescent reporters, we visualised ß-catenin/TCF-dependent and ATF2-dependent signalling activities during human cancer cell invasion, intravasation and metastatic lesion formation in the chick embryo host. We found that cancer cells readily shifted between states of low and high canonical Wnt activity. Cancer cells that displayed low Wnt canonical activity showed higher invasion and intravasation potential in primary tumours and in metastatic lesions. In contrast, cancer cells showing low ATF2-dependent activity were significantly less invasive both at the front of primary tumours and in metastatic lesions. Simultaneous visualisation of both these reporters using a double-reporter cell line confirmed their complementary activities in primary tumours and metastatic lesions. These findings might inform the development of therapies that target different branches of Wnt signalling at specific stages of metastasis.


Asunto(s)
Neoplasias , beta Catenina , Animales , Embrión de Pollo , Humanos , beta Catenina/metabolismo , Vía de Señalización Wnt , Neoplasias/genética , Línea Celular Tumoral , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo
3.
J Mol Biol ; 431(12): 2298-2319, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31026448

RESUMEN

The INhibitor of Growth (ING) family of tumor suppressors regulates the transcriptional state of chromatin by recruiting remodeling complexes to sites with histone H3 trimethylated at lysine 4 (H3K4me3). This modification is recognized by the plant homeodomain (PHD) present at the C-terminus of the five ING proteins. ING5 facilitates histone H3 acetylation by the HBO1 complex, and also H4 acetylation by the MOZ/MORF complex. We show that ING5 forms homodimers through its N-terminal domain, which folds independently into an elongated coiled-coil structure. The central region of ING5, which contains the nuclear localization sequence, is flexible and disordered, but it binds dsDNA with micromolar affinity. NMR analysis of the full-length protein reveals that the two PHD fingers of the dimer are chemically equivalent and independent of the rest of the molecule, and they bind H3K4me3 in the same way as the isolated PHD. We have observed that ING5 can form heterodimers with the highly homologous ING4, and that two of three primary tumor-associated mutants in the N-terminal domain strongly destabilize the coiled-coil structure. They also affect cell proliferation and cell cycle phase distribution, suggesting a driver role in cancer progression.


Asunto(s)
Histonas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Histonas/química , Humanos , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Alineación de Secuencia , Factores de Transcripción/química , Proteínas Supresoras de Tumor/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA