Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cancer Res ; 20(3): 434-445, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34876482

RESUMEN

Invasion of neighboring extracellular matrix (ECM) by malignant tumor cells is a hallmark of metastatic progression. This invasion can be mediated by subcellular structures known as invadopodia, the function of which depends upon soluble N-ethylmaleimide-sensitive factor-activating protein receptor (SNARE)-mediated vesicular transport of cellular cargo. Recently, it has been shown the SNARE Syntaxin4 (Stx4) mediates trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) to invadopodia, and that Stx4 is regulated by Munc18c in this context. Here, it is observed that expression of a construct derived from the N-terminus of Stx4, which interferes with Stx4-Munc18c interaction, leads to perturbed trafficking of MT1-MMP, and reduced invadopodium-based invasion in vitro, in models of triple-negative breast cancer (TNBC). Expression of Stx4 N-terminus also led to increased survival and markedly reduced metastatic burden in multiple TNBC models in vivo. The findings are the first demonstration that disrupting Stx4-Munc18c interaction can dramatically alter metastatic progression in vivo, and suggest that this interaction warrants further investigation as a potential therapeutic target. IMPLICATIONS: Disrupting the interaction of Syntaxin4 and Munc18c may be a useful approach to perturb trafficking of MT1-MMP and reduce metastatic potential of breast cancers.


Asunto(s)
Neoplasias de la Mama , Podosomas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama/patología , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Femenino , Humanos , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Invasividad Neoplásica/patología , Podosomas/metabolismo , Proteínas SNARE/metabolismo , Neoplasias de la Mama Triple Negativas/patología
2.
Front Oncol ; 11: 679955, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34094984

RESUMEN

During metastasis, cancer cells can invade extracellular matrix (ECM) through a process mediated by matrix-degrading protrusions of the plasma membrane, termed invadopodia. Formation of invadopodia correlates with cells' invasive and metastatic potential, and thus presents a potential target for therapeutic approaches to target metastatic progression. Invadopodia formation is dependent on the recruitment of proteins involved in intracellular signaling, actin cytoskeleton remodeling, and proteolytic matrix modification. The latter includes matrix degrading enzymes such as MT1-MMP, MMP2, and MMP9. These essential invadopodium-associated enzymes are required for localized matrix degradation, and their localization at invadopodia is central to invadopodium-based cancer cell invasion. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) facilitate intracellular vesicle traffic, including that involved in the transport of invadopodium-associated proteins, and in so doing promote modification of ECM and modulation of signaling pathways involved in the movement of cancer cells. Specific SNARE complexes have been found to support invadopodia formation, and these complexes are, in turn, regulated by associated proteins that interact specifically with SNAREs. Targeting SNARE regulatory proteins thus provides a possible approach to disrupt SNARE-dependent delivery of invadopodial proteins, including MT1-MMP, to sites of ECM modification. Here, we review recent studies of SNARE regulators that hold potential as targets for the development of anti-metastatic therapies for patients burdened with invadopodia-forming cancer types.

3.
Cell Signal ; 83: 109984, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33744418

RESUMEN

Integrin signaling plays a fundamental role in the establishment of focal adhesions and the subsequent formation of invadopodia in malignant cancer cells. Invadopodia facilitate localized adhesion and degradation of the extracellular matrix (ECM), which promote tumour cell invasion and metastasis. Degradation of ECM components is often driven by membrane type-1 matrix metalloproteinase (MT1-MMP), and we have recently shown that regulation of enzyme internalization is dependent on signaling downstream of ß1 integrin. Phosphorylation of the cytoplasmic tail of MT1-MMP is required for its internalization and delivery to Rab5-marked early endosomes, where it is then able to be recycled to new sites of invadopodia formation and promote invasion. Here we found that inhibition of ß1 integrin, using the antibody AIIB2, inhibited the internalization and recycling of MT1-MMP that is necessary to support long-term cellular invasion. MT1-MMP and ß1 integrin were sequestered at the cell surface when ß1-integrin was inhibited, and their association under these conditions was detected using immunoprecipitation and mass spectrometry analyses. Sequestration of ß1 integrin and MT1-MMP at the cell surface resulted in the formation of large invadopodia and local ECM degradation; however, the impaired internalization and recycling of MT1-MMP and ß1 integrin ultimately led to a loss of invasive behaviour.


Asunto(s)
Integrina beta1/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Línea Celular Tumoral , Humanos , Integrina beta1/genética , Metaloproteinasa 14 de la Matriz/genética , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Neoplasias/genética
4.
J Cell Sci ; 133(9)2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32205364

RESUMEN

Malignant cancer cells can invade extracellular matrix (ECM) through the formation of F-actin-rich subcellular structures termed invadopodia. ECM degradation at invadopodia is mediated by matrix metalloproteinases (MMPs), and recent findings indicate that membrane-anchored membrane type 1-matrix metalloproteinase (MT1-MMP, also known as MMP14) has a primary role in this process. Maintenance of an invasive phenotype is dependent on internalization of MT1-MMP from the plasma membrane and its recycling to sites of ECM remodeling. Internalization of MT1-MMP is dependent on its phosphorylation, and here we examine the role of ß1 integrin-mediated signaling in this process. Activation of ß1 integrin using the antibody P4G11 induced phosphorylation and internalization of MT1-MMP and resulted in increased cellular invasiveness and invadopodium formation in vitro We also observed phosphorylation of Src and epidermal growth factor receptor (EGFR) and an increase in their association in response to ß1 integrin activation, and determined that Src and EGFR promote phosphorylation of MT1-MMP on Thr567 These results suggest that MT1-MMP phosphorylation is regulated by a ß1 integrin-Src-EGFR signaling pathway that promotes recycling of MT1-MMP to sites of invadopodia formation during cancer cell invasion.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Integrina beta1 , Metaloproteinasa 14 de la Matriz , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Invasividad Neoplásica , Fosforilación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA