Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cytogenet ; 14(1): 11, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596973

RESUMEN

BACKGROUND: Chinese hamster ovary cell lines, also known as CHO cells, represent a large family of related, yet quite different, cell lines which are metabolic mutants derived from the original cell line, CHO-ori. Dihydrofolate reductase-deficient DXB-11 cell line, one of the first CHO derivatives, serves as the host cell line for the production of therapeutic proteins. It is generally assumed that DXB-11 is identical to DUKX or CHO-DUK cell lines, but, to our knowledge, DXB-11 karyotype has not been described yet. RESULTS: Using differential staining approaches (G-, C-banding and Ag-staining), we presented DXB-11 karyotype and revealed that karyotypes of DXB-11 and CHO-DUK cells have a number of differences. Although the number of chromosomes is equal-20 in each cell line-DXB-11 has normal chromosomes of the 1st and 5th pairs as well as an intact chromosome 8. Besides, in DXB-11 line, chromosome der(Z9) includes the material of chromosomes X and 6, whereas in CHO-DUK it results from the translocation of chromosomes 1 and 6. Ag-positive nucleolar organizer regions were revealed in the long arms of chromosome del(4)(q11q12) and both chromosome 5 homologues, as well as in the short arms of chromosomes 8 and add(8)(q11). Only 19 from 112 (16.96%) DXB-11 cells display identical chromosome complement accepted as the main structural variant of karyotype. The karyotype heterogeneity of all the rest of cells (93, 83.04%) occurs due to clonal and nonclonal additional structural rearrangements of chromosomes. Estimation of the frequency of chromosome involvement in these rearrangements allowed us to reveal that chromosomes 9, der(X)t(X;3;4), del(2)(p21p23), del(2)(q11q22) /Z2, der(4) /Z7, add(6)(p11) /Z8 are the most stable, whereas mar2, probably der(10), is the most unstable chromosome. A comparative analysis of our own and literary data on CHO karyotypes allowed to designate conservative chromosomes, both normal and rearranged, that remain unchanged in different CHO cell lines, as well as variable chromosomes that determine the individuality of karyotypes of CHO derivatives. CONCLUSION: DXB-11and CHO-DUK cell lines differ in karyotypes. The revealed differential instability of DXB-11 chromosomes is likely not incidental and results in karyotype heterogeneity of cell population.

2.
Cell Physiol Biochem ; 54(4): 556-566, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32462850

RESUMEN

BACKGROUND/AIMS: Sodium is a key player in the fundamental cell functions. Fluorescent probes are indispensable tools for monitoring intracellular sodium levels in single living cells. Since the fluorescence of sodium-sensitive dyes in cells is significantly different from that in an aqueous solution, the fluorescence signal is calibrated in situ indirectly using ionophores for equalizing external and intracellular ion concentration. Attempts to compare data obtained using fluorescent probes and by direct flame emission analysis are sparse and results are inaccurate. METHODS: We determined the intracellular sodium concentration in U937 cells by flow cytometry using the Na+-sensitive probe Asante Natrium Green-2 (ANG), and by standard flame emission photometry combined with the cellular water determination by cell density in Percoll gradient. The intracellular Na+ concentrations was modified using known ionophores or, alternatively, by blocking the sodium pump with ouabain or by causing cell apoptosis with staurosporine. RESULTS: It is revealed that both methods are comparable when intracellular sodium concentration was modified by ouabain-mediated blockage of the sodium pump or staurosporine-induced apoptosis. The ANG fluorescence of cells treated with ionophores is approximately two times lower than that in cells with the same Na+ concentration but not treated with ionophores. Although the mechanism is still unknown, this effect should be taken into account when a quantitative assessment of the concentration of intracellular sodium is required. CONCLUSION: The sodium sensitive dye ANG-2 is a sensitive and useful probe for determination changes in Na+ content and concentration both in single cells and subcellular microparticles. The ANG fluorescence determined in the studied cells in the absence of ionophores, cannot be used as a measure of the real intracellular concentration of Na+ if calibration was carried out in the presence of ionophores.


Asunto(s)
Citometría de Flujo/métodos , Colorantes Fluorescentes/química , Ionóforos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sodio/metabolismo , Calibración , Línea Celular Tumoral , Citoplasma/metabolismo , Fluorescencia , Gramicidina/farmacología , Humanos , Iones , Ouabaína/farmacología , Análisis de la Célula Individual , Estaurosporina/farmacología
3.
Channels (Austin) ; 14(1): 45-52, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32075501

RESUMEN

Assessing the expression of channels on the cell membrane is a necessary step in studying the functioning of ion channels in living cells. We explore, first, if endogenous VRAC can be assayed using flow cytometry and a commercially available antibody against an extracellular loop of the LRRC8A, also known as SWELL1, subunit of the VRAC channel. The second goal is to determine if an increase in the number of VRAC channels at the cell membrane is responsible for an increase in chloride permeability of the membrane in two well-known cases: during staurosporine (STS)-induced apoptosis and after water balance disturbance caused by hypotonic medium. Human suspension lymphoid cells U937 were used as they are suitable for flow fluorometry and because we have recently studied their membrane chloride permeability during apoptosis. We found that surface expression of endogenous LRRC8A subunits can be quantified in living U937 cells using flow fluorometry with the Alomone Lab antibody. Further, we revealed that treatment of cells for 1 hour using STS or a hypotonic solution did not change the number of LRRC8A subunits to the extent that would correspond to changes in the membrane chloride permeability determined by ion content analysis. This indicates that prolonged increase in chloride permeability of the cell membrane during apoptotic cell shrinkage or cell volume regulation under hypotonicity in U937 cells occurs without altering cell surface expression of VRAC.


Asunto(s)
Citometría de Flujo/métodos , Proteínas de la Membrana/metabolismo , Apoptosis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Tamaño de la Célula/efectos de los fármacos , Cloruros/metabolismo , Humanos , Proteínas de la Membrana/genética , Estaurosporina/farmacología , Células U937
4.
Apoptosis ; 22(10): 1287-1295, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28762188

RESUMEN

A decrease in flow cytometric forward light scatter (FSC) is commonly interpreted as a sign of apoptotic cell volume decrease (AVD). However, the intensity of light scattering depends not only on the cell size but also on its other characteristics, such as hydration, which may affect the scattering in the opposite way. That makes estimation of AVD by FSC problematic. Here, we aimed to clarify the relationship between light scattering, cell hydration (assayed by buoyant density) and cell size by the Coulter technique. We used human lymphoid cells U937 exposed to staurosporine, etoposide or hypertonic stress as an apoptotic model. An initial increase in FSC was found to occur in apoptotic cells treated with staurosporine and hypertonic solutions; it is accompanied by cell dehydration and is absent in apoptosis caused by etoposide that is consistent with the lack of dehydration in this case. Thus, the effect of dehydration on the scattering signal outweighs the effect of reduction in cell size. The subsequent FSC decrease, which occurred in parallel to accumulation of annexin-positive cells, was similar in apoptosis caused by all three types of inducers. We conclude that an increase, but not a decrease in light scattering, indicates the initial cell volume decrease associated with apoptotic cell dehydration.


Asunto(s)
Apoptosis/fisiología , Tamaño de la Célula , Citometría de Flujo , Dispersión de Radiación , Agua/análisis , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Tamaño de la Célula/efectos de los fármacos , Electrofisiología , Inhibidores Enzimáticos/farmacología , Etopósido/farmacología , Humanos , Luz , Presión Osmótica/fisiología , Estaurosporina/farmacología , Factores de Tiempo , Células U937 , Agua/metabolismo
5.
Cell Physiol Biochem ; 22(1-4): 187-94, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18769045

RESUMEN

Ouabain-sensitive (OS) and -resistant (OR) Rb(+) influx was examined in three sublines of U937 cells to compare alterations of K(+) channel permeability and the Na(+),K(+)-ATPase pump leading to the shift in ion and water balance during apoptosis induced by 0.2 and 1microM staurosporine (STS) for 4-5 h. Cell K(+), Rb(+), Na(+) and Cl(-) content was determined by flame photometry and (36)Cl distribution. Changes in cell water content were monitored by measurement of buoyant cell density and distribution of [(3)H]-glycerol or 3-O-methyl-D-[(3)H]glucose. Apoptosis was detected by DNA flow cytometry and light microscopy of the native cells stained with acridine orange. Treatment with 0.2 microM STS for 5 hours led to mild apoptosis with 10-13 % cell dehydration and either moderate increase of channel mediated Rb(+) influx without significant changes in the pump activity or moderate decrease of pump Rb(+) influx without significant change of channel influx, depending on the cell line used. Treatment with 1 microM STS was followed by 18-23 % cell dehydration, a decrease of the pump activity and a small or insignificant increase in the OR Rb(+) influx in all studied sublines. It is concluded that moderate apoptotic cell shrinkage may be associated with both an increase in K(+) channel permeability and inhibition of the pump whereas more remarkable shrinkage occurs presumably due to inhibition of the pump.


Asunto(s)
Apoptosis , Linfocitos/citología , Canales de Potasio/metabolismo , Rubidio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Apoptosis/efectos de los fármacos , Bumetanida/farmacología , ADN/metabolismo , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/enzimología , Microscopía Confocal , Ouabaína/farmacología , Estaurosporina/farmacología , Células U937
6.
Cell Physiol Biochem ; 16(4-6): 155-62, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16301816

RESUMEN

Staurosporine (STS) and etoposide (Eto) induced apoptosis of the human histiocytic lymphoma cells U937 were studied to determine the role of monovalent ions in apoptotic cell shrinkage. Cell shrinkage, defined as cell dehydration, was assayed by measurement of buoyant density of cells in continuous Percoll gradient. The K+ and Na+ content in cells of different density fractions was estimated by flame emission analysis. Apoptosis was evaluated by confocal microscopy and flow cytometry of acridine orange stained cells, by flow DNA cytometry and by effector caspase activity. Apoptosis of U937 cells induced by 1 muM STS for 4 h was found to be paralleled by an increase in buoyant density indicating cell shrinkage. An increase in density was accompanied by a decrease in K+ content (from 1.1 to 0.78 mmol/g protein), which exceeded the increase in Na+ content (from 0.30 to 0.34 mmol/g) and resulted in a significant decrease of the total K+ and Na+ content (from 1.4 to 1.1 mmol/g). In contrast to STS, 50 microM Eto for 4 h or 0.8-8 microM Eto for 18-24 h induced apoptosis without triggering cell shrinkage. During apoptosis of U937 cells induced by Eto the intracellular K(+)/Na+ ratio decreased like in the cells treated with STS, but the total K+ and Na+ content remained virtually the same due to a decrease in K+ content being nearly the same as an increase in Na+ content. Apoptotic cell dehydration correlated with the shift of the total cellular K+ and Na+ content. There was no statistically significant decrease in K+ concentration per cell water during apoptosis induced by either Eto (by 13.5%) or STS (by 8%), whereas increase in Na+ concentration per cell water was statistically significant (by 27% and 47%, respectively). The data show that apoptosis can occur without cell shrinkage-dehydration, that apoptosis with shrinkage is mostly due to a decrease in cellular K+ content, and that this decrease is not accompanied by a significant decrease of K+ concentration in cell water.


Asunto(s)
Apoptosis , Potasio/metabolismo , Sodio/metabolismo , Apoptosis/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Etopósido/farmacología , Humanos , Estaurosporina/farmacología , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...