Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Clin Nutr ; 43(1): 218-223, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096626

RESUMEN

BACKGROUND & AIMS: Patients with advanced COPD often have difficulty maintaining sufficient dietary intake. Chemosensory function influences food choice and intake but is often overlooked in dietary assessment and intervention strategies. This study aimed to assess differences in chemosensory function and hedonic evaluation of food between patients with COPD and age- and gender-matched healthy controls. Additionally, a possible association between increased risk of sarcopenia or frailty and chemosensory impairments was explored. METHODS: We recruited 53 COPD patients (34 males, mean age 66.6 ± 7.6 years) and 53 controls (25 males, mean age 68.4 ± 5.7 years). Chemosensory function was assessed using a smell threshold, smell identification (Sniffin' Sticks, Burghart) and taste recognition test (Taste Strips, Burghart) and through self-report. Sensory properties (appearance, smell, taste, mouthfeel) of four standardized food products were evaluated on 9-point hedonic rating scales. Sarcopenia risk was assessed with the SARC-F. RESULTS: The COPD group scored lower on both the smell (p = 0.026 for threshold, p = 0.001 for identification) and taste recognition tests (p < 0.001) and also reported more smell and taste impairments (p < 0.001) compared to controls. Hedonic evaluation of food items' appearance (p = 0.009) and smell (p = 0.033) was lower in COPD patients. Within the COPD group, risk of sarcopenia was not associated with chemosensory function. CONCLUSION: This study demonstrates that COPD patients have poorer chemosensory function and experience more impairments compared to controls. COPD patients also tend to evaluate foods less positive than do their controls but within COPD patients, sarcopenia risk is not associated with chemosensory function.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Sarcopenia , Masculino , Humanos , Persona de Mediana Edad , Anciano , Gusto , Sarcopenia/epidemiología , Sarcopenia/etiología , Olfato , Percepción , Enfermedad Pulmonar Obstructiva Crónica/complicaciones
2.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118610, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31738957

RESUMEN

OBJECTIVE: In muscle cells, the peroxisome proliferator-activated receptor γ co-activator 1 (PGC-1) signaling network, which has been shown to be disturbed in the skeletal muscle in several chronic diseases, tightly controls mitochondrial biogenesis and oxidative substrate metabolism. Previously, we showed that inactivation of glycogen synthase kinase (GSK)-3ß potently increased Pgc-1α abundance and oxidative metabolism in skeletal muscle cells. The current study aims to unravel the molecular mechanism driving the increase in Pgc-1α mediated by GSK-3ß inactivation. METHODS: GSK-3ß was inactivated genetically or pharmacologically in C2C12 myotubes and the requirement of transcription factors known to be involved in Pgc-1α transcription for increases in Pgc-1α abundance mediated by inactivation of GSK-3ß was examined. RESULTS: Enhanced PGC-1α promoter activation after GSK-3ß inhibition suggested a transcriptionally-controlled mechanism. While myocyte enhancer factor (MEF)2 transcriptional activity was unaltered, GSK-3ß inactivation increased the abundance and activity of the transcription factors estrogen-related receptor (ERR)α and ERRγ. Pharmacological inhibition or knock-down of ERRα and ERRγ however failed to prevent increases in Pgc-1α mRNA mediated by GSK-3ß inactivation. Interestingly, GSK-3ß inactivation activated transcription factor EB (TFEB), evidenced by decreased phosphorylation and enhanced nuclear localization of the TFEB protein. Moreover, knock-down of TFEB completely prevented increases in Pgc-1α gene expression, PGC-1α promoter activity and PGC-1α protein abundance induced by GSK-3ß inactivation. Furthermore, mutation of a specific TFEB binding site on the PGC-1α promoter blocked promoter activation upon inhibition of GSK-3ß. CONCLUSIONS: In skeletal muscle, GSK-3ß inactivation causes dephosphorylation and nuclear translocation of TFEB resulting in TFEB-dependent induction of Pgc-1α expression.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/antagonistas & inhibidores , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Sitios de Unión , Línea Celular , Núcleo Celular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/genética , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fosforilación , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transducción de Señal , Activación Transcripcional , Regulación hacia Arriba , Receptor Relacionado con Estrógeno ERRalfa
3.
Sci Rep ; 8(1): 15007, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30302028

RESUMEN

Loss of skeletal muscle mitochondrial oxidative capacity is well-established in patients with COPD, but the role of mitochondrial breakdown herein is largely unexplored. Currently, we studied if mitochondrial breakdown signalling is increased in skeletal muscle of COPD patients and associates with the loss of mitochondrial content, and whether it is affected in patients with iron deficiency (ID) or systemic inflammation. Therefore, mitophagy, autophagy, mitochondrial dynamics and content markers were analysed in vastus lateralis biopsies of COPD patients (N = 95, FEV1% predicted: 39.0 [31.0-53.6]) and healthy controls (N = 15, FEV1% predicted: 112.8 [107.5-125.5]). Sub-analyses were performed on patients stratified by ID or C-reactive protein (CRP). Compared with controls, COPD patients had lower muscle mitochondrial content, higher BNIP3L and lower FUNDC1 protein, and higher Parkin protein and gene-expression. BNIP3L and Parkin protein levels inversely correlated with mtDNA/gDNA ratio and FEV1% predicted. ID-COPD patients had lower BNIP3L protein and higher BNIP3 gene-expression, while high CRP patients had higher BNIP3 and autophagy-related protein levels. In conclusion, our data indicates that mitochondrial breakdown signalling is increased in skeletal muscle of COPD patients, and is related to disease severity and loss of mitochondrial content. Moreover, systemic inflammation is associated with higher BNIP3 and autophagy-related protein levels.


Asunto(s)
Inflamación/genética , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas Proto-Oncogénicas/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Proteínas Supresoras de Tumor/genética , Anciano , Anemia Ferropénica/sangre , Anemia Ferropénica/genética , Anemia Ferropénica/patología , Autofagia/genética , Proteína C-Reactiva/metabolismo , ADN Mitocondrial/genética , Femenino , Regulación de la Expresión Génica/genética , Humanos , Inflamación/sangre , Inflamación/patología , Masculino , Persona de Mediana Edad , Mitocondrias/patología , Proteínas Mitocondriales/genética , Mitofagia/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas/genética
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2913-2926, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29883716

RESUMEN

BACKGROUND: Mitochondrial biogenesis is crucial for myogenic differentiation and regeneration of skeletal muscle tissue and is tightly controlled by the peroxisome proliferator-activated receptor-γ co-activator 1 (PGC-1) signaling network. In the present study, we hypothesized that inactivation of glycogen synthase kinase (GSK)-3ß, previously suggested to interfere with PGC-1 in non-muscle cells, potentiates PGC-1 signaling and the development of mitochondrial biogenesis during myogenesis, ultimately resulting in an enhanced myotube oxidative capacity. METHODS: GSK-3ß was inactivated genetically or pharmacologically during myogenic differentiation of C2C12 muscle cells. In addition, m. gastrocnemius tissue was collected from wild-type and muscle-specific GSK-3ß knock-out (KO) mice at different time-points during the reloading/regeneration phase following a 14-day hind-limb suspension period. Subsequently, expression levels of constituents of the PGC-1 signaling network as well as key parameters of mitochondrial oxidative metabolism were investigated. RESULTS: In vitro, both knock-down as well as pharmacological inhibition of GSK-3ß not only increased expression levels of important constituents of the PGC-1 signaling network, but also potentiated myogenic differentiation-associated increases in mitochondrial respiration, mitochondrial DNA copy number, oxidative phosphorylation (OXPHOS) protein abundance and the activity of key enzymes involved in the Krebs cycle and fatty acid ß-oxidation. In addition, GSK-3ß KO animals showed augmented reloading-induced increases in skeletal muscle gene expression of constituents of the PGC-1 signaling network as well as sub-units of OXPHOS complexes compared to wild-type animals. CONCLUSION: Inactivation of GSK-3ß stimulates activation of PGC-1 signaling and mitochondrial biogenesis during myogenic differentiation and reloading of the skeletal musculature.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/fisiología , Desarrollo de Músculos/fisiología , Músculo Esquelético/fisiología , Biogénesis de Organelos , Animales , Diferenciación Celular/fisiología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/genética , Suspensión Trasera/efectos adversos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/citología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Mioblastos/citología , Mioblastos/fisiología , Fosforilación Oxidativa/efectos de los fármacos , Piridinas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3075-3086, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28943449

RESUMEN

BACKGROUND: Aberrant skeletal muscle mitochondrial oxidative metabolism is a debilitating feature of chronic diseases such as chronic obstructive pulmonary disease, type 2 diabetes and chronic heart failure. Evidence in non-muscle cells suggests that glycogen synthase kinase-3ß (GSK-3ß) represses mitochondrial biogenesis and inhibits PPAR-γ co-activator 1 (PGC-1), a master regulator of cellular oxidative metabolism. The role of GSK-3ß in the regulation of skeletal muscle oxidative metabolism is unknown. AIMS: We hypothesized that inactivation of GSK-3ß stimulates muscle oxidative metabolism by activating PGC-1 signaling and explored if GSK-3ß inactivation could protect against physical inactivity-induced alterations in skeletal muscle oxidative metabolism. METHODS: GSK-3ß was modulated genetically and pharmacologically in C2C12 myotubes in vitro and in skeletal muscle in vivo. Wild-type and muscle-specific GSK-3ß knock-out (KO) mice were subjected to hind limb suspension for 14days. Key constituents of oxidative metabolism and PGC-1 signaling were investigated. RESULTS: In vitro, knock-down of GSK-3ß increased mitochondrial DNA copy number, protein and mRNA abundance of oxidative phosphorylation (OXPHOS) complexes and activity of oxidative metabolic enzymes but also enhanced protein and mRNA abundance of key PGC-1 signaling constituents. Similarly, pharmacological inhibition of GSK-3ß increased transcript and protein abundance of key constituents and regulators of mitochondrial energy metabolism. Furthermore, GSK-3ß KO animals were protected against unloading-induced decrements in expression levels of these constituents. CONCLUSION: Inactivation of GSK-3ß up-regulates skeletal muscle mitochondrial metabolism and increases expression levels of PGC-1 signaling constituents. In vivo, GSK-3ß KO protects against inactivity-induced reductions in muscle metabolic gene expression.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Músculo Esquelético/metabolismo , Animales , Línea Celular , Respiración de la Célula/fisiología , Activación Enzimática , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/enzimología , Fosforilación Oxidativa , Transducción de Señal , Factores de Transcripción/metabolismo , Regulación hacia Arriba
6.
Biochim Biophys Acta ; 1852(5): 992-1000, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25703138

RESUMEN

The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor. Alternative splicing and enzymatic shedding produce soluble forms that protect against damage by ligands including Advanced Glycation End products (AGEs). A link between RAGE and oxygen levels is evident from studies showing RAGE-mediated injury following hyperoxia. The effect of hypoxia on pulmonary RAGE expression and circulating sRAGE levels is however unknown. Therefore mice were exposed to chronic hypoxia for 21 d and expression of RAGE, sheddases in lungs and circulating sRAGE were determined. In addition, accumulation of AGEs in lungs and expression of the AGE detoxifying enzyme GLO1 and receptors were evaluated. In lung tissue gene expression of total RAGE, variants 1 and 3 were elevated in mice exposed to hypoxia, whereas mRAGE and sRAGE protein levels were decreased. In the hypoxic group plasma sRAGE levels were enhanced. Although the levels of pro-ADAM10 were elevated in lungs of hypoxia exposed mice, the relative amount of the active form was decreased and gelatinase activity unaffected. In the lungs, the RAGE ligand HMGB1 was decreased and of the AGEs, only LW-1 was increased by chronic hypoxia. Gene expression of AGE receptors 2 and 3 was significantly upregulated. Chronic hypoxia is associated with downregulation of pulmonary RAGE protein levels, but a relative increase in sRAGE. These alterations might be part of the adaptive and protective response mechanism to chronic hypoxia and are not associated with AGE formation except for the fluorophore LW-1 which emerges as a novel marker of tissue hypoxia.


Asunto(s)
Expresión Génica , Hipoxia/genética , Pulmón/metabolismo , Receptores Inmunológicos/genética , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Enfermedad Crónica , Productos Finales de Glicación Avanzada/metabolismo , Proteína HMGB1/metabolismo , Humanos , Hipoxia/sangre , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/sangre , Receptores Inmunológicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Solubilidad , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Endocrinology ; 156(5): 1770-81, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25710281

RESUMEN

A shift in quadriceps muscle metabolic profile toward decreased oxidative metabolism and increased glycolysis is a consistent finding in chronic obstructive pulmonary disease (COPD). Chronic inflammation has been proposed as a trigger of this pathological metabolic adaptation. Indeed, the proinflammatory cytokine TNF-α impairs muscle oxidative metabolism through activation of the nuclear factor-κB (NF-κB) pathway. Putative effects on muscle glycolysis, however, are unclear. We hypothesized that TNF-α-induced NF-κB signaling stimulates muscle glycolytic metabolism through activation of the glycolytic regulator hypoxia-inducible factor-1α (HIF-1α). Wild-type C2C12 and C2C12-IκBα-SR (blocked NF-κB signaling) myotubes were stimulated with TNF-α, and its effects on glycolytic metabolism and involvement of the HIF pathway herein were investigated. As proof of principle, expression of HIF signaling constituents was investigated in quadriceps muscle biopsies of a previously well-characterized cohort of clinically stable patients with severe COPD and healthy matched controls. TNF-α increased myotube glucose uptake and lactate production and enhanced the activity and expression levels of multiple effectors of muscle glycolytic metabolism in a NF-κB-dependent manner. In addition, TNF-α activated HIF signaling, which required classical NF-κB activation. Moreover, the knockdown of HIF-1α largely attenuated TNF-α-induced increases in glycolytic metabolism. Accordingly, the mRNA levels of HIF-1α and the HIF-1α target gene, vascular endothelial growth factor (VEGF), were increased in muscle biopsies of COPD patients compared with controls, which was most pronounced in the patients with high levels of muscle TNF-α. In conclusion, these data show that TNF-α-induced classical NF-κB activation enhances muscle glycolytic metabolism in a HIF-1α-dependent manner.


Asunto(s)
Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Fibras Musculares Esqueléticas/metabolismo , FN-kappa B/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Factor de Necrosis Tumoral alfa/genética , Animales , Estudios de Casos y Controles , Línea Celular , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético , FN-kappa B/efectos de los fármacos , Músculo Cuádriceps/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
J Appl Physiol (1985) ; 118(2): 200-11, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25429096

RESUMEN

Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers.


Asunto(s)
Hipoxia/patología , Músculos/patología , Atrofia Muscular/patología , Adaptación Fisiológica , Animales , Autofagia , Expresión Génica , Glucocorticoides/metabolismo , Glucólisis , Hipoxia/complicaciones , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lisosomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Músculos/irrigación sanguínea , Músculos/metabolismo , Atrofia Muscular/etiología , Oxidación-Reducción , Distribución Aleatoria , Ubiquitina-Proteína Ligasas/metabolismo
9.
Am J Physiol Endocrinol Metab ; 306(6): E615-26, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24425759

RESUMEN

Physical inactivity-induced loss of skeletal muscle oxidative phenotype (OXPHEN), often observed in chronic disease, adversely affects physical functioning and quality of life. Potential therapeutic targets remain to be identified, since the molecular mechanisms involved in reloading-induced recovery of muscle OXPHEN remain incompletely understood. We hypothesized a role for alternative NF-κB, as a recently identified positive regulator of muscle OXPHEN, in reloading-induced alterations in muscle OXPHEN. Markers and regulators (including alternative NF-κB signaling) of muscle OXPHEN were investigated in gastrocnemius muscle of mice subjected to a hindlimb suspension/reloading (HLS/RL) protocol. Expression levels of oxidative phosphorylation subunits and slow myosin heavy chain isoforms I and IIA increased rapidly upon RL. After an initial decrease upon HLS, mRNA levels of peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC) molecules PGC-1α and PGC-1ß and mRNA levels of mitochondrial transcription factor A (Tfam) and estrogen-related receptor α increased upon RL. PPAR-δ, nuclear respiratory factor 1 (NRF-1), NRF-2α, and sirtuin 1 mRNA levels increased during RL although expression levels were unaltered upon HLS. In addition, both Tfam and NRF-1 protein levels increased significantly during the RL period. Moreover, upon RL, IKK-α mRNA and protein levels increased, and phosphorylation of P100 and subsequent processing to P52 were elevated, reflecting alternative NF-κB activation. We conclude that RL-induced recovery of muscle OXPHEN is associated with activation of alternative NF-κB signaling.


Asunto(s)
Modelos Animales de Enfermedad , Inmovilización/efectos adversos , Músculo Esquelético/metabolismo , Trastornos Musculares Atróficos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Factores de Transcripción/biosíntesis , Animales , Biomarcadores/metabolismo , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/biosíntesis , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Suspensión Trasera , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/rehabilitación , Cadenas Pesadas de Miosina/biosíntesis , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , FN-kappa B/agonistas , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Distribución Aleatoria , Receptores de Estrógenos/biosíntesis , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Soporte de Peso , Receptor Relacionado con Estrógeno ERRalfa
10.
Biochim Biophys Acta ; 1842(2): 175-85, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24215713

RESUMEN

BACKGROUND: Loss of quadriceps muscle oxidative phenotype (OXPHEN) is an evident and debilitating feature of chronic obstructive pulmonary disease (COPD). We recently demonstrated involvement of the inflammatory classical NF-κB pathway in inflammation-induced impairments in muscle OXPHEN. The exact underlying mechanisms however are unclear. Interestingly, IκB kinase α (IKK-α: a key kinase in the alternative NF-κB pathway) was recently identified as a novel positive regulator of skeletal muscle OXPHEN. We hypothesised that inflammation-induced classical NF-κB activation contributes to loss of muscle OXPHEN in COPD by reducing IKK-α expression. METHODS: Classical NF-κB signalling was activated (molecularly or by tumour necrosis factor α: TNF-α) in cultured myotubes and the impact on muscle OXPHEN and IKK-α levels was investigated. Moreover, the alternative NF-κB pathway was modulated to investigate the impact on muscle OXPHEN in absence or presence of an inflammatory stimulus. As a proof of concept, quadriceps muscle biopsies of COPD patients and healthy controls were analysed for expression levels of IKK-α, OXPHEN markers and TNF-α. RESULTS: IKK-α knock-down in cultured myotubes decreased expression of OXPHEN markers and key OXPHEN regulators. Moreover, classical NF-κB activation (both by TNF-α and IKK-ß over-expression) reduced IKK-α levels and IKK-α over-expression prevented TNF-α-induced impairments in muscle OXPHEN. Importantly, muscle IKK-α protein abundance and OXPHEN was reduced in COPD patients compared to controls, which was more pronounced in patients with increased muscle TNF-α mRNA levels. CONCLUSION: Classical NF-κB activation impairs skeletal muscle OXPHEN by reducing IKK-α expression. TNF-α-induced reductions in muscle IKK-α may accelerate muscle OXPHEN deterioration in COPD.


Asunto(s)
Quinasa I-kappa B/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , FN-kappa B/metabolismo , Anciano , Animales , Western Blotting , Línea Celular , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Quinasa I-kappa B/genética , Masculino , Ratones , Persona de Mediana Edad , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , FN-kappa B/genética , Oxidación-Reducción/efectos de los fármacos , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/fisiopatología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
11.
Int J Biochem Cell Biol ; 45(10): 2245-56, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23827718

RESUMEN

Skeletal muscle wasting contributes to impaired exercise capacity, reduced health-related quality of life and is an independent determinant of mortality in chronic obstructive pulmonary disease. An imbalance between protein synthesis and myogenesis on the one hand, and muscle proteolysis and apoptosis on the other hand, has been proposed to underlie muscle wasting in this disease. In this review, the current understanding of the state and regulation of these processes governing muscle mass in this condition is presented. In addition, a conceptual mode of action of disease-related determinants of muscle wasting including disuse, hypoxemia, malnutrition, inflammation and glucocorticoids is provided by overlaying the available associative clinical data with causal evidence, mostly derived from experimental models. Significant progression has been made in understanding and managing muscle wasting in chronic obstructive pulmonary disease. Further examination of the time course of muscle wasting and specific disease phenotypes, as well as the application of systems biology and omics approaches in future research will allow the development of tailored strategies to prevent or reverse muscle wasting in chronic obstructive pulmonary disease. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.


Asunto(s)
Músculo Esquelético/patología , Atrofia Muscular/etiología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Animales , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Biosíntesis de Proteínas , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Transducción de Señal
12.
Biochim Biophys Acta ; 1832(8): 1313-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23563317

RESUMEN

BACKGROUND: Impairments in skeletal muscle oxidative phenotype (OXPHEN) have been linked to the development of insulin resistance, metabolic inflexibility and progression of the metabolic syndrome and have been associated with progressive disability in diseases associated with chronic systemic inflammation. We previously showed that the inflammatory cytokine tumour necrosis factor-α (TNF-α) directly impairs muscle OXPHEN but underlying molecular mechanisms remained unknown. Interestingly, the inflammatory signalling pathway classical nuclear factor-κB (NF-κB) is activated in muscle in abovementioned disorders. Therefore, we hypothesised that muscle activation of classical NF-κB signalling is sufficient and required for inflammation-induced impairment of muscle OXPHEN. METHODS: Myotubes from mouse and human muscle cell lines were subjected to activation or blockade of the classical NF-κB pathway. In addition, wild-type and MISR (muscle-specific inhibition of classical NF-κB) mice were injected intra-muscularly with TNF-α. Markers and key regulators of muscle OXPHEN were investigated. RESULTS: Classical NF-κB activation diminished expression of oxidative phosphorylation (OXPHOS) sub-units, slow myosin heavy chain expression, activity of mitochondrial enzymes and potently reduced intra-cellular ATP levels. Accordingly, PGC-1/PPAR/NRF-1/Tfam signalling, the main pathway controlling muscle OXPHEN, was impaired upon classical NF-κB activation which required intact p65 trans-activation domains and depended on de novo gene transcription. Unlike wild-type myotubes, IκBα-SR myotubes (blocked classical NF-κB signalling) were refractory to TNF-α-induced impairments in OXPHEN and its regulation by the PGC-1/PPAR/NRF-1/Tfam cascade. In line with in vitro data, NF-κB blockade in vivo abrogated TNF-α-induced reductions in PGC-1α expression. CONCLUSION: Classical NF-κB activation impairs skeletal muscle OXPHEN.


Asunto(s)
Músculo Esquelético/metabolismo , FN-kappa B/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Humanos , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , FN-kappa B/genética , Oxidación-Reducción , Fenotipo , Fosforilación , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
13.
J Appl Physiol (1985) ; 114(9): 1253-62, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23019314

RESUMEN

Pulmonary cachexia is a prevalent, debilitating, and well-recognized feature of COPD associated with increased mortality and loss of peripheral and respiratory muscle function. The exact cause and underlying mechanisms of cachexia in COPD are still poorly understood. Increasing evidence, however, shows that pathological changes in intracellular mechanisms of muscle mass maintenance (i.e., protein turnover and myonuclear turnover) are likely involved. Potential factors triggering alterations in these mechanisms in COPD include oxidative stress, myostatin, and inflammation. In addition to muscle wasting, peripheral muscle in COPD is characterized by a fiber-type shift toward a more type II, glycolytic phenotype and an impaired oxidative capacity (collectively referred to as an impaired oxidative phenotype). Atrophied diaphragm muscle in COPD, however, displays an enhanced oxidative phenotype. Interestingly, intrinsic abnormalities in (lower limb) peripheral muscle seem more pronounced in either cachectic patients or weight loss-susceptible emphysema patients, suggesting that muscle wasting and intrinsic changes in peripheral muscle's oxidative phenotype are somehow intertwined. In this manuscript, we will review alterations in mechanisms of muscle mass maintenance in COPD and discuss the involvement of oxidative stress, inflammation, and myostatin as potential triggers of cachexia. Moreover, we postulate that an impaired muscle oxidative phenotype in COPD can accelerate the process of cachexia, as it renders muscle in COPD less energy efficient, thereby contributing to an energy deficit and weight loss when not dietary compensated. Furthermore, loss of peripheral muscle oxidative phenotype may increase the muscle's susceptibility to inflammation- and oxidative stress-induced muscle damage and wasting.


Asunto(s)
Caquexia/fisiopatología , Músculo Esquelético/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Apoptosis , Caquexia/etiología , Caquexia/patología , Metabolismo Energético , Glucólisis , Humanos , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/patología , Regeneración , Factor de Necrosis Tumoral alfa/metabolismo
14.
FASEB J ; 24(12): 5052-62, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20807714

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterized by weight loss, muscle wasting (in advanced disease ultimately resulting in cachexia), and loss of muscle oxidative phenotype (oxphen). This study investigates the effect of inflammation (as a determinant of muscle wasting) on muscle oxphen by using cell studies combined with analyses of muscle biopsies of patients with COPD and control participants. We analyzed markers (citrate synthase, ß-hydroxyacyl-CoA dehydrogenase, and cytochrome c oxidase IV) and regulators (PGC-1α, PPAR-α, and Tfam) of oxphen in vastus lateralis muscle biopsies of patients with advanced COPD and healthy smoking control participants. Here 17 of 73 patients exhibited elevated muscle TNF-α mRNA levels. In these patients, significantly lower mRNA levels of all oxidative markers/regulators were found. Interestingly, these patients also had a significantly lower body mass index and tended to have less muscle mass. In cultured muscle cells, mitochondrial protein content and myosin heavy chain isoform I (but not II) protein and mRNA levels were reduced on chronic TNF-α stimulation. TNF-α also reduced mitochondrial respiration in a nuclear factor kappaB (NF-κB) -dependent manner. Importantly, TNF-α-induced NF-κB activation decreased promoter transactivation and transcriptional activity of regulators of mitochondrial biogenesis and muscle oxphen. In conclusion, these results demonstrate that TNF-α impairs muscle oxphen in a NF-κB-dependent manner.


Asunto(s)
Caquexia/metabolismo , Músculo Esquelético/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Western Blotting , Línea Celular , Citrato (si)-Sintasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Ensayo de Inmunoadsorción Enzimática , Proteínas de Choque Térmico/metabolismo , Humanos , Hidroliasas/metabolismo , Ratones , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/efectos de los fármacos , FN-kappa B/genética , FN-kappa B/metabolismo , PPAR alfa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/genética
15.
Eur Respir J ; 36(1): 81-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19897554

RESUMEN

Quadriceps strength relates to exercise capacity and prognosis in chronic obstructive pulmonary disease (COPD). We wanted to quantify the prevalence of quadriceps weakness in COPD and hypothesised that it would not be restricted to patients with severe airflow obstruction or dyspnoea. Predicted quadriceps strength was calculated using a regression equation (incorporating age, sex, height and fat-free mass), based on measurements from 212 healthy subjects. The prevalence of weakness (defined as observed values 1.645 standardised residuals below predicted) was related to Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage and Medical Research Council (MRC) dyspnoea score in two cohorts of stable COPD outpatients recruited from the UK (n = 240) and the Netherlands (n = 351). 32% and 33% of UK and Dutch COPD patients had quadriceps weakness. A significant proportion of patients in GOLD stages 1 and 2, or with an MRC dyspnoea score of 1 or 2, had quadriceps weakness (28 and 26%, respectively). These values rose to 38% in GOLD stage 4, and 43% in patients with an MRC Score of 4 or 5. Quadriceps weakness was demonstrable in one-third of COPD patients attending hospital respiratory outpatient services. Quadriceps weakness exists in the absence of severe airflow obstruction or breathlessness.


Asunto(s)
Disnea/fisiopatología , Debilidad Muscular/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Músculo Cuádriceps/fisiopatología , Índice de Severidad de la Enfermedad , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Tolerancia al Ejercicio/fisiología , Femenino , Volumen Espiratorio Forzado/fisiología , Humanos , Masculino , Persona de Mediana Edad , Debilidad Muscular/etiología , Países Bajos , Prevalencia , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Estudios Retrospectivos , Reino Unido
16.
Mol Cell Endocrinol ; 315(1-2): 113-20, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19804813

RESUMEN

Pathways involved in mitochondrial biogenesis associated with myogenic differentiation are poorly defined. Therefore, C(2)C(12) myoblasts were differentiated into multi-nucleated myotubes and parameters/regulators of mitochondrial biogenesis were investigated. Mitochondrial respiration, citrate synthase- and beta-hydroxyacyl-CoA dehydrogenase activity as well as protein content of complexes I, II, III and V of the mitochondrial respiratory chain increased 4-8-fold during differentiation. Additionally, an increase in the ratio of myosin heavy chain (MyHC) slow vs MyHC fast protein content was observed. PPAR transcriptional activity and transcript levels of PPAR-alpha, the PPAR co-activator PGC-1alpha, mitochondrial transcription factor A and nuclear respiratory factor 1 increased during differentiation while expression levels of PPAR-gamma decreased. In conclusion, expression and activity levels of genes known for their regulatory role in skeletal muscle oxidative capabilities parallel the increase in oxidative parameters during the myogenic program. In particular, PGC-1alpha and PPAR-alpha may be involved in the regulation of mitochondrial biogenesis during myogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Mitocondrias Musculares/metabolismo , Desarrollo de Músculos/fisiología , Animales , Biomarcadores/metabolismo , Línea Celular , Respiración de la Célula/fisiología , ADN Mitocondrial/genética , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/fisiología , Mioblastos/citología , Mioblastos/fisiología , Fosforilación Oxidativa , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
17.
Am J Physiol Endocrinol Metab ; 297(1): E174-83, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19417127

RESUMEN

Skeletal muscle pathology associated with a chronic inflammatory disease state (e.g., skeletal muscle atrophy and insulin resistance) is a potential consequence of chronic activation of NF-kappaB. It has been demonstrated that peroxisome proliferator-activated receptors (PPARs) can exert anti-inflammatory effects by interfering with transcriptional regulation of inflammatory responses. The goal of the present study, therefore, was to evaluate whether PPAR activation affects cytokine-induced NF-kappaB activity in skeletal muscle. Using C(2)C(12) myotubes as an in vitro model of myofibers, we demonstrate that PPAR, and specifically PPARgamma, activation potently inhibits inflammatory mediator-induced NF-kappaB transcriptional activity in a time- and dose-dependent manner. Furthermore, PPARgamma activation by rosiglitazone strongly suppresses cytokine-induced transcript levels of the NF-kappaB-dependent genes intracellular adhesion molecule 1 (ICAM-1) and CXCL1 (KC), the murine homolog of IL-8, in myotubes. To verify whether muscular NF-kappaB activity in human subjects is suppressed by PPARgamma activation, we examined the effect of 8 wk of rosiglitazone treatment on muscular gene expression of ICAM-1 and IL-8 in type 2 diabetes mellitus patients. In these subjects, we observed a trend toward decreased basal expression of ICAM-1 mRNA levels. Subsequent analyses in cultured myotubes revealed that the anti-inflammatory effect of PPARgamma activation is not due to decreased RelA translocation to the nucleus or reduced RelA DNA binding. These findings demonstrate that muscle-specific inhibition of NF-kappaB activation may be an interesting therapeutic avenue for treatment of several inflammation-associated skeletal muscle abnormalities.


Asunto(s)
Músculo Esquelético/metabolismo , FN-kappa B/antagonistas & inhibidores , PPAR gamma/fisiología , Animales , Células Cultivadas , Citocinas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Mediadores de Inflamación/farmacología , Masculino , Ratones , Persona de Mediana Edad , Músculo Esquelético/efectos de los fármacos , FN-kappa B/metabolismo , FN-kappa B/fisiología , PPAR gamma/agonistas , Pirimidinas/farmacología , Rosiglitazona , Tiazoles/farmacología , Tiazolidinedionas/farmacología , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
19.
Eur Respir J ; 31(3): 502-8, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18310397

RESUMEN

Extrapulmonary pathology significantly impairs clinical outcome in chronic obstructive pulmonary disease (COPD). The peroxisome proliferator-activated receptors (PPARs) are implicated in the regulation of several hallmarks of systemic COPD pathology, including cachexia, decreased oxidative muscle metabolism, oxidative stress and systemic inflammation. Recently, expression of PPARs and related cofactors was shown to be reduced in peripheral skeletal muscle of patients with moderate-to-severe COPD and muscle weakness. The current authors hypothesise that impaired peroxisome proliferator-activated receptor signalling may underlie some of the muscular disturbances in chronic obstructive pulmonary disease. Proposed mechanisms will be outlined in the present article, as well as the therapeutic potential of peroxisome proliferator-activated receptor modulation in the treatment of skeletal muscle dysfunction.


Asunto(s)
Debilidad Muscular/fisiopatología , Receptores Activados del Proliferador del Peroxisoma/efectos de los fármacos , Receptores Activados del Proliferador del Peroxisoma/fisiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Suplementos Dietéticos , Terapia por Ejercicio , Ácidos Grasos Insaturados , Humanos , Inflamación/fisiopatología , Debilidad Muscular/tratamiento farmacológico , Músculo Esquelético/fisiología , Estrés Oxidativo , Receptores Activados del Proliferador del Peroxisoma/agonistas , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
20.
Thorax ; 63(2): 100-7, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17875568

RESUMEN

BACKGROUND: Systemic proinflammatory cytokines and oxidative stress have been described in association with peripheral muscle wasting and weakness of patients with severe chronic obstructive pulmonary disease (COPD), but their expression in skeletal muscle is unknown. The objectives of the present study were to determine muscle protein levels of selected cytokines in patients with COPD and to study their relationships with protein carbonylation as a marker of oxidative stress, quadriceps function and exercise capacity. METHODS: We conducted a cross sectional study in which 36 cytokines were detected using a human antibody array in quadriceps specimens obtained from 19 patients with severe COPD and seven healthy controls. Subsequently, selected cytokines (tumour necrosis factor (TNF)alpha, TNFalpha receptors I and II, interleukin (IL) 6, interferon gamma, transforming growth factor (TGF) beta and vascular endothelial growth factor (VEGF)), as well as protein carbonylation (oxidative stress index) were determined using an enzyme linked immunosorbent assay (ELISA) in all muscles. RESULTS: Compared with controls, the vastus lateralis of patients with COPD showed significantly lower protein ELISA levels of TNFalpha, which positively correlated with their quadriceps function, TNFalpha receptor II and VEGF. Protein ELISA levels of IL6, interferon gamma and TGFbeta did not differ between patients and controls. Quadriceps protein carbonylation was greater in patients and inversely correlated with quadriceps strength among them. CONCLUSIONS: These findings do not support the presence of a proinflammatory environment within the quadriceps muscles of clinically and weight stable patients with severe COPD, despite evidence for increased oxidative stress and the presence of muscle weakness.


Asunto(s)
Citocinas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Músculo Cuádriceps/metabolismo , Anciano , Biomarcadores/metabolismo , Biopsia con Aguja , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Debilidad Muscular/metabolismo , Debilidad Muscular/fisiopatología , Estrés Oxidativo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...