Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Carbohydr Polym ; 331: 121871, 2024 May 01.
Article En | MEDLINE | ID: mdl-38388038

The administration of Mg ions is advantageous in pathological scenarios such as pre-enclampsia and forms of neuroinflammation (e.g. stroke or injury); yet, few systems exist for their sustained delivery. Here, we present the (static light scattering and diffusing-wave spectroscopy) characterization of magnesium alginate (MgAlg) as a potentially injectable vehicle ifor the delivery of Mg. Differently from other divalent cations, Mg does not readily induce gelation: it acts within MgAlg coils, making them more rigid and less prone to entangle. As a result, below a threshold concentration (notionally below 0.5 % wt.) MgAlg are inherently less viscous than those of sodium alginate (NaAlg), which is a major advantage for injectables; at higher concentrations, however, (stable, Mg-based) aggregation starts occurring. Importantly, Mg can then be released e.g. in artificial cerebrospinal fluid, via a slow (hours) process of ion exchange. Finally, we here show that MgAlg protects rat neural stem cells from the consequence of an oxidative insult (100 µM H2O2), an effect that we can only ascribe to the sustained liberation of Mg ions, since it was not shown by NaAlg, MgSO4 or the NaAlg/MgSO4 combination. Our results therefore indicate that MgAlg is a promising vehicle for Mg delivery under pathological (inflammatory) conditions.


Hydrogen Peroxide , Magnesium , Rats , Animals , Viscosity , Cations, Divalent/chemistry , Alginates/chemistry
2.
Pharmaceutics ; 13(6)2021 Jun 08.
Article En | MEDLINE | ID: mdl-34201089

Vascular and traumatic injuries of the central nervous system are recognized as global health priorities. A polypharmacology approach that is able to simultaneously target several injury factors by the combination of agents having synergistic effects appears to be promising. Herein, we designed a polymeric delivery system loaded with two drugs, ibuprofen (Ibu) and thyroid hormone triiodothyronine (T3) to in vitro release the suitable amount of the anti-inflammation and the remyelination drug. As a production method, electrospinning technology was used. First, Ibu-loaded micro (diameter circa 0.95-1.20 µm) and nano (diameter circa 0.70 µm) fibers were produced using poly(l-lactide) PLLA and PLGA with different lactide/glycolide ratios (50:50, 75:25, and 85:15) to select the most suitable polymer and fiber diameter. Based on the in vitro release results and in-house knowledge, PLLA nanofibers (mean diameter = 580 ± 120 nm) loaded with both Ibu and T3 were then successfully produced by a co-axial electrospinning technique. The in vitro release studies demonstrated that the final Ibu/T3 PLLA system extended the release of both drugs for 14 days, providing the target sustained release. Finally, studies in cell cultures (RAW macrophages and neural stem cell-derived oligodendrocyte precursor cells-OPCs) demonstrated the anti-inflammatory and promyelinating efficacy of the dual drug-loaded delivery platform.

3.
Int J Biol Macromol ; 106: 739-748, 2018 Jan.
Article En | MEDLINE | ID: mdl-28827204

This study focuses on the development of novel bone-like scaffolds by bio-inspired, pH-driven, mineralization of type I collagen matrix with magnesium-doped hydroxyapatite nanophase (MgHA/Coll). To this aim, this study evaluates the altered modifications in the obtained composite due to different crosslinkers such as dehydrothermal treatment (DHT), 1,4-butanediol diglycidyl ether (BDDGE) and ribose in terms of morphological, physical-chemical and biological properties. The physical-chemical properties of the composites evaluated by XRD, FTIR, ICP and TGA demonstrated that the chemical mimesis of bone was effectively achieved using the in-lab biomineralization process. Furthermore, the presence of various crosslinkers greatly promoted beneficial enzymatic resistivity and swelling ability. The morphological results revealed highly porous and fibrous micro-architecture with total porosity above 85% with anisotropic pore size within the range of 50-200µm in all the analysed composites. The mechanical behaviour in response to compressive forces demonstrated enhanced compressive modulus in all crosslinked composites, suggesting that mechanical behaviour is largely dependent on the type of crosslinker used. The biomimetic compositional and morphological features of the composites elicited strong cell-material interaction. Therefore, the results showed that by activating specific crosslinking mechanisms, hybrid composites can be designed and tailored to develop tissue-specific biomimetic biomaterials for hard tissue engineering.


Collagen/chemistry , Cross-Linking Reagents/chemistry , Durapatite/chemistry , Regenerative Medicine , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Biomimetics , Butylene Glycols/chemistry , Collagen/therapeutic use , Durapatite/therapeutic use , Porosity , Tissue Engineering/methods , Tissue Scaffolds/chemistry
4.
Biomed Res Int ; 2017: 8074178, 2017.
Article En | MEDLINE | ID: mdl-28852649

Long bone defects represent a clinical challenge. Bone tissue engineering (BTE) has been developed to overcome problems associated with conventional methods. The aim of this study was to assess the BTE strategies available in preclinical and clinical settings and the current evidence supporting this approach. A systematic literature screening was performed on PubMed database, searching for both preclinical (only on large animals) and clinical studies. The following string was used: "(Scaffold OR Implant) AND (Long bone defect OR segmental bone defect OR large bone defect OR bone loss defect)." The search retrieved a total of 1573 articles: 51 preclinical and 4 clinical studies were included. The great amount of preclinical papers published over the past few years showed promising findings in terms of radiological and histological evidence. Unfortunately, this in vivo situation is not reflected by a corresponding clinical impact, with few published papers, highly heterogeneous and with small patient populations. Several aspects should be further investigated to translate positive preclinical findings into clinical protocols: the identification of the best biomaterial, with both biological and biomechanical suitable properties, and the selection of the best choice between cells, GFs, or their combination through standardized models to be validated by randomized trials.


Biocompatible Materials , Bone and Bones , Tissue Engineering , Tissue Scaffolds , Bone Transplantation , Bone and Bones/injuries , Bone and Bones/surgery , Humans
5.
Biomed Mater ; 12(5): 055002, 2017 Aug 21.
Article En | MEDLINE | ID: mdl-28573980

In this study, ribose was proposed as a promising, non-toxic, low-cost crosslinker to enhance the structural integrity and stiffness of type I collagen matrices. The main objective was to determine the optimal conditions of glycation by ribose to fabricate 3D porous collagen scaffolds and to verify their effectiveness for use as scaffolds for cartilage tissue engineering, by physicochemical and biological characterization. Two different crosslinking strategies were investigated including variation in the amount of ribose and the time of reaction: pre-crosslinking (PRE) and post-crosslinking (POST). All ribose-glycated collagen scaffolds demonstrated good swelling properties and interconnected porous microstructure suitable for cell growth and colonization. The POST samples were superior to PRE, in terms of porosity, degree of crosslinking, fluid uptake ability, and resistance to enzymatic digestion. Moreover, the mechanical properties of the scaffolds were significantly improved upon glycation when compared to non-crosslinked collagen, manifesting the best performance for POST matrices crosslinked for 5 d and in the highest amount of sugar. In vitro studies analyzing cell-material interactions revealed scaffold cytocompatibility with higher cell viability and cell proliferation as well as higher glycosaminoglycan secretion for POST scaffolds with respect to PRE. This report demonstrated the feasibility of developing 3D collagen scaffolds by ribose glycation and highlighted the POST-crosslinking strategy as being more favorable than the PRE-crosslinking to achieve scaffolds suitable for cartilage regeneration.


Collagen/chemistry , Ribose/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Cartilage/metabolism , Cartilage/pathology , Cell Proliferation , Cell Survival , Collagen Type I/chemistry , Collagenases/chemistry , Cross-Linking Reagents/chemistry , Glycosaminoglycans/chemistry , Hydrogen-Ion Concentration , Materials Testing , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Microscopy, Electron, Scanning , Porosity , Pressure , Regeneration , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Temperature
6.
Mater Sci Eng C Mater Biol Appl ; 77: 594-605, 2017 Aug 01.
Article En | MEDLINE | ID: mdl-28532070

This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated. The obtained results explicate that with controlled freeze-drying, highly anisotropic porous structures with opportune macro-micro porosity are obtained. The physical-chemical features of the scaffolds characterized by XRD, FTIR, ICP and TGA demonstrated structural mimicry analogous to the native bone. The influence of ribose greatly assisted in decreasing solubility and increased enzymatic resistivity of the scaffolds. In addition, enhanced mechanical behaviour in response to compressive forces was achieved. Preliminary cell culture experiments reported good cytocompatibility with extensive cell adhesion, proliferation and colonization. Overall, scaffolds developed by pre-ribose glycation process are preferred, as the related crosslinking technique is more facile and robust to obtain functional scaffolds. As a proof of concept, we have demonstrated that ribose crosslinking is cost-effective, safe and functionally effective. This study also offers new insights and opportunities in developing promising scaffolds for bone tissue engineering.


Biomimetics , Cell Proliferation , Collagen , Durapatite , Porosity , Ribose , Tissue Engineering , Tissue Scaffolds
7.
Int J Biol Macromol ; 95: 1199-1209, 2017 Feb.
Article En | MEDLINE | ID: mdl-27836656

The present study aims to investigate the physical-chemical and biological features exhibited by porous scaffolds for regeneration of cartilaginous tissues obtained through stabilization of 3D gelatin hydrogels by physical (DHT), chemical (BDDGE) and natural (Genipin) cross-linking approaches. The study aimed at comparatively assessing the porous microstructure and the long-term resistance of the scaffolds upon degradation in wet physiological conditions (37°C, pH=7.4). The degree of cross-linking increases as function of incorporation of cross-linkers which was maximum up to 73% for BDDGE. The infrared spectroscopy and thermal analysis confirmed the gelatin structure was preserved during the cross-linking treatments. Mechanical properties of the scaffolds were analysed by static and dynamic compression test, which showed different viscoelastic behaviour upon various cross-linking strategies. The biological performance of the scaffolds investigated using human chondrocytes showed good cell adhesion, viability and proliferation, as well as extensive 3D scaffold colonization. Besides, the analysis of gene expression related to the formation of new chondral tissue reported increasing ability with time in the formation of new extra-cellular matrix. In conclusion, out of three different cross-linking methods, the gelatin scaffolds subjected to dehydrothermal treatment (DHT) represented to be the most favourable 3D scaffold for cartilage regeneration.


Butylene Glycols/chemistry , Cross-Linking Reagents/chemistry , Gelatin/chemistry , Iridoids/chemistry , Tissue Engineering/methods , Tissue Scaffolds , Animals , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Chondrocytes/cytology , Chondrocytes/drug effects , Elasticity , Gelatin/isolation & purification , Gelatin/pharmacology , Hot Temperature , Humans , Hydrogen-Ion Concentration , Porosity , Skin/chemistry , Swine , Viscosity
8.
Stem Cells Int ; 2015: 597652, 2015.
Article En | MEDLINE | ID: mdl-26240572

Among the current therapeutic approaches for the regeneration of damaged articular cartilage, none has yet proven to offer results comparable to those of native hyaline cartilage. Recently, it has been claimed that the use of mesenchymal stem cells (MSCs) provides greater regenerative potential than differentiated cells, such as chondrocytes. Among the different kinds of MSCs available, adipose-derived mesenchymal stem cells (ADSCs) are emerging due to their abundancy and easiness to harvest. However, their mechanism of action and potential for cartilage regeneration are still under investigation, and many other aspects still need to be clarified. The aim of this systematic review is to give an overview of in vivo studies dealing with ADSCs, by summarizing the main evidence for the treatment of cartilage disease of the knee.

9.
Open Orthop J ; 9: 143-56, 2015.
Article En | MEDLINE | ID: mdl-26157531

Arthroscopic meniscal treatment is the most common procedure performed in the orthopedic practice. Current management of meniscal pathology relies on different therapeutic options, ranging from selective meniscectomy, suturing, and to meniscal replacement by using either allografts or scaffolds. The progresses made in the field of regenerative medicine and biomaterials allowed to develop several meniscal substitutes, some of those currently used in the clinical practice. Before reaching the clinical application, these devices necessarily undergo accurate testing in the animal model: the aim of the present manuscript is to systematically review the scientific evidence derived by animal model results for the use of meniscal scaffolds, in order to understand the current state of research in this particular field and to identify the trends at preclinical level that may influence in the near future the clinical practice. Thirty-four papers were included in the present analysis. In 12 cases the meniscal scaffolds were used with cells to further stimulate tissue regeneration. With the exception of some negative reports regarding dacron-based scaffolds, the majority of the trials highlighted that biomaterials and bio-engineered scaffolds are safe and could play a beneficial role in stimulating meniscal healing and in chondral protection. With regard to the benefits of cell augmentation, the evidence is limited to a small number of studies and no conclusive evidence is available. However, preclinical evidence seems to suggest that cells could enhance tissue regeneration with respect to the use of biomaterials alone, and further research should confirm the translational potential of cell-based approach.

...