Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 290(44): 26491-507, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26370081

RESUMEN

Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Lactoilglutatión Liasa/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Choque Térmico/genética , Humanos , Lactoilglutatión Liasa/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación , NADP/genética , NADP/metabolismo , Transporte de Proteínas/fisiología , Piruvaldehído/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Mol Biol Cell ; 25(14): 2129-42, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24829379

RESUMEN

Mitochondrial Hsp70 (mtHsp70) is essential for a vast repertoire of functions, including protein import, and requires effective interdomain communication for efficient partner-protein interactions. However, the in vivo functional significance of allosteric regulation in eukaryotes is poorly defined. Using integrated biochemical and yeast genetic approaches, we provide compelling evidence that a conserved substrate-binding domain (SBD) loop, L4,5, plays a critical role in allosteric communication governing mtHsp70 chaperone functions across species. In yeast, a temperature-sensitive L4,5 mutation (E467A) disrupts bidirectional domain communication, leading to compromised protein import and mitochondrial function. Loop L4,5 functions synergistically with the linker in modulating the allosteric interface and conformational transitions between SBD and the nucleotide-binding domain (NBD), thus regulating interdomain communication. Second-site intragenic suppressors of E467A isolated within the SBD suppress domain communication defects by conformationally altering the allosteric interface, thereby restoring import and growth phenotypes. Strikingly, the suppressor mutations highlight that restoration of communication from NBD to SBD alone is the minimum essential requirement for effective in vivo function when primed at higher basal ATPase activity, mimicking the J-protein-bound state. Together these findings provide the first mechanistic insights into critical regions within the SBD of mtHsp70s regulating interdomain communication, thus highlighting its importance in protein translocation and mitochondrial biogenesis.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , ATPasas Transportadoras de Calcio/química , ATPasas Transportadoras de Calcio/genética , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Humanos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Recambio Mitocondrial , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
3.
Hum Mol Genet ; 21(15): 3317-32, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22544056

RESUMEN

Parkinson's disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with 'mitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.


Asunto(s)
Variación Genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Sitios de Unión , ADN Mitocondrial/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Chaperonas Moleculares/genética , Mutación , Estabilidad Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transfección
4.
J Biol Chem ; 285(25): 19472-82, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20392697

RESUMEN

Mitochondria biogenesis requires the import of several precursor proteins that are synthesized in the cytosol. The mitochondrial heat shock protein 70 (mtHsp70) machinery components are highly conserved among eukaryotes, including humans. However, the functional properties of human mtHsp70 machinery components have not been characterized among all eukaryotic families. To study the functional interactions, we have reconstituted the components of the mtHsp70 chaperone machine (Hsp70/J-protein/GrpE/Hep) and systematically analyzed in vitro conditions for biochemical functions. We observed that the sequence-specific interaction of human mtHsp70 toward mitochondrial client proteins differs significantly from its yeast counterpart Ssc1. Interestingly, the helical lid of human mtHsp70 was found dispensable to the binding of P5 peptide as compared with the other Hsp70s. We observed that the two human mitochondrial matrix J-protein splice variants differentially regulate the mtHsp70 chaperone cycle. Strikingly, our results demonstrated that human Hsp70 escort protein (Hep) possesses a unique ability to stimulate the ATPase activity of mtHsp70 as well as to prevent the aggregation of unfolded client proteins similar to J-proteins. We observed that Hep binds with the C terminus of mtHsp70 in a full-length context and this interaction is distinctly different from unfolded client-specific or J-protein binding. In addition, we found that the interaction of Hep at the C terminus of mtHsp70 is regulated by the helical lid region. However, the interaction of Hep at the ATPase domain of the human mtHsp70 is mutually exclusive with J-proteins, thus promoting a similar conformational change that leads to ATPase stimulation. Additionally, we highlight the biochemical defects of the mtHsp70 mutant (G489E) associated with a myelodysplastic syndrome.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/química , Empalme Alternativo , Animales , Anisotropía , Bovinos , Células HeLa , Humanos , Microscopía Fluorescente/métodos , Modelos Biológicos , Chaperonas Moleculares/química , Péptidos/química , Isoformas de Proteínas , Tiosulfato Azufretransferasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...