Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Cureus ; 16(4): e57785, 2024 Apr.
Article En | MEDLINE | ID: mdl-38721174

INTRODUCTION: Reducing the healing period after surgical placement of dental implants can facilitate the loading of dental prostheses. AIM: The aim is to compare the osteogenic potential of unmodified titanium disks with titanium disks that were surface-modified or hydrogel-coated. MATERIALS AND METHODOLOGY: One hundred eight titanium disks (Ø6 × 2-mm) were divided into three groups: (1) unmodified titanium as control (Ti-C); (2) sandblasted and acid-etched (Ti-SLA), and (3) coated with tamarind kernel polysaccharide hydrogel grafted with acrylic acid (Ti-TKP-AA). The osteogenic potential and cytotoxic effect of various groups of titanium were compared using human osteoblasts Saos-2. The surface topography of the titanium disks and morphology of osteoblasts grown on disks were investigated by scanning electron microscopy (n = 3). Cell attachment to the disks and actin expression intensity were investigated by confocal imaging (n = 3). Cytotoxicity was quantified by cell viability assay (n = 9). Osteoblast maturation was determined by alkaline phosphatase assay (n = 9). Cell mineralization was quantified by Alizarin red staining (n = 9). One-way analysis of variance followed by Tukey's multiple comparisons test was used for intergroup comparisons (α= 0.05). RESULTS: The surface modifications on Ti-SLA and Ti-TKP-AA support better morphology and proliferation of osteoblasts than Ti-C (P< 0.001) and significantly higher levels of actin cytoskeleton accumulation (P< 0.0001). Ti-TKP-AA showed a significantly higher maturation rate than Ti-C (P< 0.001). Ti-TKP-AA showed > twofold increased mineralization than Ti-C and Ti-SLA (P< 0.001). CONCLUSIONS: TKP-AA hydrogel-coated titanium promotes faster osteoblast proliferation, maturation, and mineralization than SLA-treated or untreated titanium. These advantages can be explored for achieving early osseointegration and prosthetic loading of titanium dental implants.

2.
ACS Biomater Sci Eng ; 10(4): 2367-2384, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38470969

Treating different types of bone defects is difficult, complicated, time-consuming, and expensive. Here, we demonstrate that transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechanosensitive, thermogated, and nonselective cation channel, is endogenously present in the mesenchymal stem cells (MSCs). TRPV4 regulates both cytosolic Ca2+ levels and mitochondrial health. Accordingly, the hydrogel made from a natural modified biopolymer carboxymethyl tamarind CMT-Hy and encapsulated with TRPV4-modulatory agents affects different parameters of MSCs, such as cell morphology, focal adhesion points, intracellular Ca2+, and reactive oxygen species- and NO-levels. TRPV4 also regulates cell differentiation and biomineralization in vitro. We demonstrate that 4α-10-CMT-Hy and 4α-50-CMT-Hy (the hydrogel encapsulated with 4αPDD, 10 and 50 nM, TRPV4 activator) surfaces upregulate mitochondrial health, i.e., an increase in ATP- and cardiolipin-levels, and improve the mitochondrial membrane potential. The same scaffold turned out to be nontoxic in vivo. 4α-50-CMT-Hy enhances the repair of the bone-drill hole in rat femur, both qualitatively and quantitatively in vivo. We conclude that 4α-50-CMT-Hy as a scaffold is suitable for treating large-scale bone defects at low cost and can be tested for clinical trials.


Hydrogels , TRPV Cation Channels , Rats , Animals , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Hydrogels/pharmacology , Reactive Oxygen Species/metabolism
3.
Int J Biol Macromol ; 264(Pt 2): 130605, 2024 Apr.
Article En | MEDLINE | ID: mdl-38447827

Gold nanoparticles (AuNPs) have been reported to modulate bone tissue regeneration and are being extensively utilized in biomedical implementations attributable to their low cytotoxicity, biocompatibility and simplicity of functionalization. Lately, biologically synthesized nanoparticles have acquired popularity because of their environmentally acceptable alternatives for diverse applications. Here we report the green synthesis of AuNPs by taking the biopolymer Carboxymethyl Tamarind (CMT) as a unique reducing as well as a stabilizing agent. The synthesized CMT-AuNPs were analyzed by UV-vis spectrophotometer, DLS, FTIR, XRD, TGA, SEM and TEM. These results suggest that CMT-AuNPs possess an average size of 19.93 ± 8.52 nm and have long-term stability. Further, these CMT-AuNPs promote the proliferation together with the differentiation and mineralization of osteoblast cells in a "dose-dependent" manner. Additionally, CMT-AuNPs are non-toxic to SD rats when applied externally. We suggest that the CMT-AuNPs have the potential to be a suitable and non-toxic agent for differentiation and mineralization of osteoblast cells in vitro and this can be tested in vivo as well.


Metal Nanoparticles , Tamarindus , Rats , Animals , Gold/pharmacology , Calcium , Biomineralization , Rats, Sprague-Dawley , Plant Extracts
4.
Int J Biol Macromol ; 234: 123724, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36801298

In the current work, biomaterial composed of Xanthan gum and Diethylene glycol dimethacrylate with impregnation of graphite nanopowder filler in their matrices was fabricated successfully for their potential usage in the engineering of bone defects. Various physicochemical properties associated with the biomaterial were characterized using FTIR, XRD, TGA, SEM etc. The biomaterial rheological studies imparted the better notable properties associated with the inclusion of graphite nanopowder. The biomaterial synthesized exhibited a controlled drug release. Adhesion and proliferation of different secondary cell lines do not generate ROS on the current biomaterial and thus show its biocompatibility and non-toxic nature. The synthesized biomaterial's osteogenic potential on SaOS-2 cells was supported by increased ALP activity, enhanced differentiation and biomineralization under osteoinductive circumstances. The current biomaterial demonstrates that in addition to the drug-delivery applications, it can also be a cost-effective substrate for cellular activities and has all the necessary properties to be considered as a promising alternative material suitable for repairing and restoring bone tissues. We propose that this biomaterial may have commercial importance in the biomedical field.


Graphite , Tissue Scaffolds , Tissue Scaffolds/chemistry , Graphite/pharmacology , Biomineralization , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Bone and Bones , Bone Regeneration , Osteogenesis , Tissue Engineering
5.
ACS Omega ; 7(11): 9537-9550, 2022 Mar 22.
Article En | MEDLINE | ID: mdl-35350319

Bone defects, including bone loss due to increased osteoclast activity, have become a global health-related issue. Osteoclasts attach to the bone matrix and resorb the same, playing a vital role in bone remodeling. Ca2+ homeostasis plays a pivotal role in the differentiation and maturation of osteoclasts. In this work, we examined the role of TRPV1, a nonselective cation channel, in osteoclast function and differentiation. We demonstrate that endogenous TRPV1 is functional and causes Ca2+ influx upon activation with pharmacological activators [resiniferatoxin (RTX) and capsaicin] at nanomolar concentration, which enhances the generation of osteoclasts, whereas the TRPV1 inhibitor (5'-IRTX) reduces osteoclast differentiation. Activation of TRPV1 upregulates tartrate-resistant acid phosphatase activity and the expression of cathepsin K and calcitonin receptor genes, whereas TRPV1 inhibition reverses this effect. The slow release of capsaicin or RTX at a nanomolar concentration from a polysaccharide-based hydrogel enhances bone marrow macrophage (BMM) differentiation into osteoclasts whereas release of 5'-IRTX, an inhibitor of TRPV1, prevents macrophage fusion and osteoclast formation. We also characterize several subcellular parameters, including reactive oxygen (ROS) and nitrogen (RNS) species in the cytosol, mitochondrial, and lysosomal profiles in BMMs. ROS were found to be unaltered upon TRPV1 modulation. NO, however, had elevated levels upon RTX-mediated TRPV1 activation. Capsaicin altered mitochondrial membrane potential (ΔΨm) of BMMs but not 5'-IRTX. Channel modulation had no significant impact on cytosolic pH but significantly altered the pH of lysosomes, making these organelles less acidic. Since BMMs are precursors for osteoclasts, our findings of the cellular physiology of these cells may have broad implications in understanding the role of thermosensitive ion channels in bone formation and functions, and the TRPV1 modulator-releasing hydrogel may have application in bone tissue engineering and other biomedical sectors.

6.
J Prosthet Dent ; 126(1): 92.e1-92.e8, 2021 Jul.
Article En | MEDLINE | ID: mdl-34049698

STATEMENT OF PROBLEM: Rapid osseointegration between implant and bone tissue for early loading of a prosthesis with sufficient primary stability depends on the surface characteristics of the implant. The development and characterization of suitable surface coatings on dental implants is a major challenge. PURPOSE: The purpose of this in vitro study was to evaluate and compare the osteogenic potential and cytotoxicity of unmodified zirconia, acid-etched zirconia, bioactive glass-coated zirconia, and tamarind kernel polysaccharide with hydrophilic acrylic acid (TKP-AA) hydrogel-coated zirconia. MATERIAL AND METHODS: Thirty-six disks each of unmodified zirconia, acid-etched, 45S5 bioactive glass-coated, and TKP-AA hydrogel-coated zirconia were evaluated for osteogenic potential and cytotoxic effect by using human osteoblast Saos-2 cells. The surface topography of the disks and the morphology of the cells grown on these surfaces were examined by scanning electron microscopy (n=3). The cell attachment was evaluated by confocal imaging (n=3). The cytotoxic effect was evaluated by cell viability assay (n=9). Osteoblast maturation was assessed by alkaline phosphatase assay (n=9) and cell mineralization by alizarin red staining (n=9). ANOVA and Bonferroni multiple comparison post hoc tests were used to evaluate the statistical significance of the intergroup differences in these characteristics (α=.05). RESULTS: The surface modifications resulted in distinct changes in the surface morphology of zirconia disks and the growth of Saos-2 cells. Zirconia disks coated with TKP-AA promoted higher proliferation of osteoblasts compared with unmodified disks (P<.001). Similarly, the surface modifications significantly increased the differentiation of mesenchymal stem cells to osteoblasts as compared with uncoated zirconia (P<.001). However, the rate of differentiation to osteoblasts was similar among the surface modifications. Acid-etched and TKP-AA-coated disks promoted mineralization of osteoblasts to the same extent, except bioactive glass coating, which significantly increased the rate of mineralization (P<.001). CONCLUSIONS: Surface modification of zirconia by acid etching and coating with Bioglass or TKP-AA hydrogel resulted in the improved growth and differentiation of osteoblasts. TKP-AA hydrogel coating promoted the proliferation of osteoblasts, whereas Bioglass coating showed better mineralization. TKP-AA hydrogel coating is a promising candidate for improving the osseointegration of dental implants that warrants further investigation.


Dental Implants , Osseointegration , Cell Proliferation , Humans , Osteoblasts , Surface Properties , Titanium , Zirconium
7.
Mater Sci Eng C Mater Biol Appl ; 121: 111779, 2021 Feb.
Article En | MEDLINE | ID: mdl-33579440

Advanced technologies like skin tissue engineering are requisite of various disorders where artificially synthesized materials need to be used as a scaffold in vivo, which in turn can allow the formation of functional skin and epidermal layer with all biological sensory functions. In this work, we present a set of hydrogels which have been synthesized by the method utilizing radical polymerization of a natural polymer extracted from kernel of Tamarindus indica, commonly known as Tamarind Kernel Powder (TKP) modified by utilizing the monomer acrylic acid (AA) in different mole ratios. These materials are termed as TKP: AA hydrogels and characterized by Atomic Force Microscopy (AFM), surface charge, and particle size distribution using Dynamic Light Scattering measurements. These materials are biocompatible with mouse dermal fibroblasts (NIH- 3T3) and human skin keratinocytes (HaCaT), as confirmed by MTT and biocompatibility assays. These TKP: AA hydrogels do not induce unwanted ROS signaling as confirmed by mitochondrial functionality determined by DCFDA staining, Mitosox imaging, and measuring the ATP levels. We demonstrate that in the co-culture system, TKP: AA allows the establishment of proper neuro-keratinocyte contact formation, suggesting that this hydrogel can be suitable for developing skin with sensory functions. Skin corrosion analysis on SD rats confirms that TKP: AA is appropriate for in vivo applications as well. This is further confirmed by in vivo compatibility and toxicity studies, including hemocompatibility and histopathology of liver and kidney upon direct introduction of hydrogel into the body. We propose that TKP: AA (1: 5) offers a suitable surface for skin tissue engineering with sensory functions applicable in vitro, in vivo, and ex vivo. These findings may have broad biomedical and clinical importance.


Tamarindus , Animals , Biocompatible Materials , Hydrogels , Keratinocytes , Polysaccharides , Rats , Rats, Sprague-Dawley , Skin , Tissue Engineering
8.
Sci Rep ; 11(1): 3730, 2021 02 12.
Article En | MEDLINE | ID: mdl-33580126

A major limitation in the bio-medical sector is the availability of materials suitable for bone tissue engineering using stem cells and methodology converting the stochastic biological events towards definitive as well as efficient bio-mineralization. We show that osteoblasts and Bone Marrow-derived Mesenchymal Stem Cell Pools (BM-MSCP) express TRPM8, a Ca2+-ion channel critical for bone-mineralization. TRPM8 inhibition triggers up-regulation of key osteogenesis factors; and increases mineralization by osteoblasts. We utilized CMT:HEMA, a carbohydrate polymer-based hydrogel that has nanofiber-like structure suitable for optimum delivery of TRPM8-specific activators or inhibitors. This hydrogel is ideal for proper adhesion, growth, and differentiation of osteoblast cell lines, primary osteoblasts, and BM-MSCP. CMT:HEMA coated with AMTB (TRPM8 inhibitor) induces differentiation of BM-MSCP into osteoblasts and subsequent mineralization in a dose-dependent manner. Prolonged and optimum inhibition of TRPM8 by AMTB released from the gels results in upregulation of osteogenic markers. We propose that AMTB-coated CMT:HEMA can be used as a tunable surface for bone tissue engineering. These findings may have broad implications in different bio-medical sectors.


Osteoblasts/metabolism , TRPM Cation Channels/metabolism , Tissue Engineering/methods , Animals , Benzamides/metabolism , Benzamides/pharmacology , Bone Marrow Cells/cytology , Bone and Bones/metabolism , Cell Differentiation , Cells, Cultured , Female , Hydrogels/chemistry , Hydrogels/pharmacology , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Osteogenesis , Primary Cell Culture , Rats , Rats, Sprague-Dawley , TRPM Cation Channels/antagonists & inhibitors , Thiophenes/metabolism , Thiophenes/pharmacology
9.
Mater Sci Eng C Mater Biol Appl ; 118: 111348, 2021 Jan.
Article En | MEDLINE | ID: mdl-33254970

In this work, sodium alginate (SA) based "all-natural" composite bio-sponges were designed for potential application as wound care scaffold. The composite bio-sponges were developed from the aqueous amalgamation of SA and cellulose nanofibres (CNFs) in bio-extracts like Rice water (Rw) and Giloy extract (Ge). These sponges were modified by employing a simple coating strategy using vegetable oil-based bio-polyurethane (BioPU) to tailor their physicochemical and biological properties so as to match the specific requirements of a wound care scaffold. Bio-sponges with shared interpenetrating polymeric network structures were attained at optimized BioPU coating formulation. The interpenetration of BioPU chains within the sponge construct resulted in the formation of numerous micro-networks in the interconnected microporous structure of sponges (porosity ≥75%). The coated sponge showed a superior mechanical strength (compressive strength ~3.8 MPa, compressive modulus ~35 MPa) with appreciable flexibility and recoverability under repeated compressive loading-unloading cycles. A tunable degradation behaviour was achieved by varying BioPU coating concentrations owing to the different degree of polymer chain entanglement within the sponge construct. The physical entanglement of BioPU chains with core structural components of sponge improved their structural stability by suppressing their full fragmentation in water-based medium without affecting its swelling behaviour (swelling ratio > 1000%). The coated sponge surface has provided a suitable moist-adherent physical environment to support the adhesion and growth of skin cells (HaCaT cells). The MTT (3-(4,5-dimethyl thiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and hemolytic assay revealed the non-toxic and biocompatible nature of coated sponges in vitro. Moreover, no signs of skin erythema or edema were observed during in vivo dermal irritation and corrosion test performed on the skin of Sprague Dawley (SD) rats. Our initial observations revealed the credibility of these sponges as functional wound care scaffolds as well as its diverse potential as a suitable substrate for various tissue engineering applications.


Alginates , Nanofibers , Animals , Cellulose , Plant Extracts , Polyurethanes , Porosity , Rats , Rats, Sprague-Dawley , Tissue Engineering , Tissue Scaffolds
11.
ACS Appl Mater Interfaces ; 11(46): 42998-43017, 2019 Nov 20.
Article En | MEDLINE | ID: mdl-31664808

Multidrug resistant (MDR) bacteria have emerged as a major clinical challenge. The unavailability of effective antibiotics has necessitated the use of emerging nanoparticles as alternatives. In this work, we have developed carbohydrate-coated bimetallic nanoparticles (Au-AgNP, 30-40 nm diameter) that are nontoxic toward mammalian cells yet highly effective against MDR strains as compared to their monometallic counterparts (Ag-NP, Au-NP). The Au-AgNP is much more effective against Gram-negative MDR Escherichia coli and Enterobacter cloacae when compared to most of the potent antibiotics. We demonstrate that in vivo, Au-AgNP is at least 11000 times more effective than Gentamicin in eliminating MDR Methicillin Resistant Staphylococcus aureus (MRSA) infecting mice skin wounds. Au-AgNP is able to heal and regenerate infected wounds faster and in scar-free manner. In vivo results show that this Au-AgNP is very effective antibacterial agent against MDR strains and does not produce adverse toxicity. We conclude that this bimetallic nanoparticle can be safe in complete skin regeneration in bacteria infected wounds.


Bacteria/growth & development , Coated Materials, Biocompatible , Drug Resistance, Multiple, Bacterial/drug effects , Gold , Metal Nanoparticles , Silver , Wound Healing/drug effects , Wound Infection , Animals , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Gold/chemistry , Gold/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Mice , Mice, Inbred BALB C , Silver/chemistry , Silver/pharmacology , Wound Infection/drug therapy , Wound Infection/metabolism , Wound Infection/microbiology , Wound Infection/pathology
12.
Carbohydr Polym ; 222: 114983, 2019 Oct 15.
Article En | MEDLINE | ID: mdl-31320091

This study reports the synthesis of an unprecedented bio-based aquasorbent guargum-g-hyperbranched poly (acrylic acid); bGG-g-HBPAA by employing graft-copolymerization and "Strathclyde methodology" simultaneously in emulsion and its possible use as a sustainable nutrient bed for the effective growth of Anabaena cylindrica and Vigna radiata seedlings. The formation of bGG-g-HBPAA and the presence of hyperbranched architectures was confirmed from XRD, FTIR, 13C NMR, solubility, intrinsic viscosity, BET surface area/ pore size, SEM and rheology analyses. The synthesized grade with a branching percent of 65.4% and a swelling percentage of 13,300% facilitated maximum growth of the cultured species as compared to guargum and its linear graft. Semi synthetic bGG-g-HBPAA culture medium was optically transparent, dried at a controlled rate, held a huge amount of water for growth, provided sufficient space for unhindered growth and featured dimensional stability.


Acrylates/chemistry , Anabaena cylindrica/growth & development , Culture Media/chemistry , Galactans/chemistry , Hydrogels/chemistry , Mannans/chemistry , Plant Gums/chemistry , Vigna/growth & development , Hydrogen-Ion Concentration , Polymerization , Seedlings/growth & development , Temperature , Viscosity , Water/chemistry
13.
Mater Sci Eng C Mater Biol Appl ; 99: 1246-1256, 2019 Jun.
Article En | MEDLINE | ID: mdl-30889660

A potential nanograde antibiotic with hyperbranched architecture was synthesized from melt esterification of poly(ethylene glycol) or PEG and Citric acid or CA with 1:1 mol composition. PEG of different molecular weights, c.a. 4000, 6000 and 20,000 were used during the polyesterification. The polyester molecules of nanometric size were highly water soluble and showed a melting point between 55 and 60 °C. The branching status was established from spectroscopy, flow behaviour (viscosity) and rheological evidences. The extent of branching and flowability, both were reduced as the molecular weight of PEG was increased. During in-vitro pathological study, all the grades showed reasonably strong antibacterial affect (both with gram positive and negative bacteria), high selectivity, biocompatibility and controlled generation of reactive oxygen species or ROS, however, the grade with maximum level of branching and functional chain ends displayed highest therapeutic efficiency, may that be considered further as a potential agent for next level investigation.


Anti-Bacterial Agents/pharmacology , Nanoparticles/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Animals , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Hydrodynamics , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Mice , Microbial Sensitivity Tests , Microbial Viability/drug effects , Particle Size , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Rheology , Solubility , Spectroscopy, Fourier Transform Infrared , Viscosity
14.
Front Microbiol ; 9: 823, 2018.
Article En | MEDLINE | ID: mdl-29780364

Antibacterial therapy is of paramount importance in treatment of several acute and chronic infectious diseases caused by pathogens. Over the years extensive use and misuse of antimicrobial agents has led to emergence of multidrug resistant (MDR) and extensive drug resistant (XDR) pathogens. This drastic escalation in resistant phenotype has limited the efficacy of available therapeutic options. Thus, the need of the hour is to look for alternative therapeutic approaches to mitigate healthcare concerns caused due to MDR bacterial infections. Nanoparticles have gathered much attention as potential candidates for antibacterial therapy. Equipped with advantages of, wide spectrum bactericidal activity at very low dosage, inhibitor of biofilm formation and ease of permeability, nanoparticles have been considered as leading therapeutic candidates to curtail infections resulting from MDR bacteria. However, substrate non-specificity of efflux pumps, particularly those belonging to resistance nodulation division super family, have been reported to reduce efficacy of many potent antibacterial therapeutic drugs. Previously, we had reported antibacterial activity of polysaccharide-capped silver nanoparticles (AgNPs) toward MDR bacteria. We showed that AgNPs inhibits biofilm formation and alters expression of cytoskeletal proteins FtsZ and FtsA, with minimal cytotoxicity toward mammalian cells. In the present study, we report no reduction in antibacterial efficacy of silver nanoparticles in presence of AcrAB-TolC efflux pump proteins. Antibacterial tests were performed according to CLSI macrobroth dilution method, which revealed that both silver nanoparticles exhibited bactericidal activity at very low concentrations. Further, immunoblotting results indicated that both the nanoparticles modulate the transporter AcrB protein expression. However, expression of the membrane fusion protein AcrA did show a significant increase after exposure to AgNPs. Our results indicate that both silver nanoparticles are effective in eliminating MDR Enterobacter cloacae isolates and their action was not inhibited by AcrAB-TolC efflux protein expression. As such, the above nanoparticles have strong potential to be used as effective and alternate therapeutic candidates to combat MDR gram-negative Enterobacterial pathogens.

15.
Carbohydr Polym ; 189: 87-98, 2018 Jun 01.
Article En | MEDLINE | ID: mdl-29580430

Patho-physiologies related to skin are diverse in nature such as burns, skin ulcers, atopic dermatitis, psoriasis etc. which impose severe bio-medical problems and thus enforce requirement of new and healthy skin prepared through tissues engineering methodologies. However, fully functional and biodegradable matrix for attachment, growth, proliferation and differentiation of the relevant cells is not available. In the present study, we introduce a set of hydrogels synthesized by incorporation of a synthetic monomer (Hydroxyethlmethacryate) with a semi-synthetic polymer backbone (carboxy methyl tamarind, CMT) in different mole ratios. We termed these materials as CMT:HEMA based hydrogels and these were characterized by different physico-chemical techniques, namely by X-Ray Diffraction, SEM and Dynamic Light Scattering. Biocompatibility studies with HaCaT, NIH-3T3 and mouse dermal fibroblasts confirm that this material is biocompatible. MTT assay further confirmed that this material does not have any cytotoxic effects. Assays for mitochondrial functionality such as ATP assay and mitochondrial reactive oxygen (ROS) generation also suggest that this material is safe and does not have any cytotoxicity. Hemolytic assay with red blood cells and acute skin irritation test on SD Rats confirmed that this material is suitable for ex-vivo application in future. We suggest that this hydrogel is suitable for in-vivo applications and may have clinical and commercial importance against skin disorders.


Methacrylates/chemistry , Polysaccharides/chemistry , Tissue Engineering/methods , Animals , Cell Line, Tumor , Cells, Cultured , Female , Humans , Male , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Tissue Scaffolds/chemistry , X-Ray Diffraction
16.
Connect Tissue Res ; 59(sup1): 111-121, 2018 12.
Article En | MEDLINE | ID: mdl-29458266

PURPOSE: With increased life expectancy, disorders in lifestyle and other clinical conditions, and the changes in the connective tissues such as in bone, impose diverse biomedical problems. Cells belong to osteogenic lineages are extremely specific for their surface requirements. Therefore, suitable surfaces are the critical bottle neck for successful bone tissue engineering. This study involves assessment of polysaccharide-based hydrogel which effectively allows growth, differentiation and mineralisation of osteogenic cells even in the absence of osteogenic inducing factors. MATERIALS AND METHODS: Tamarind Kernel Polysaccharide was grafted with acrylic acid at different mole ratio. The critical parameter, surface morphology for bio application was assessed by SEM. MTT assay has been performed with hydrogels on Saos-2 cells. The biocompatibility and adhesion of different cell lines (F-11, Saos-2, Raw 264.7 and MSCs) on hydrogel surface was performed by Phalloidin and DAPI staining. Further the differentiation, mineralization and expression of different osteogenic markers, ALP assay, Alizarin Red staining and q-PCR was performed. RESULTS: The hydrogels show highly porous and interconnected pores. MTT assay demonstrates the hydrogel have no cytotoxicity towards Saos-2 cells and are suitable for proliferation of different lineage of cell lines. ALP, Alizarin red staining and q-PCR assay shows that the hydrogel surface enhances the differentiation, mineralization and expression of different osteogenic genes in Saos-2 cells in the absence of any osteogenic inducing factors. Conclusion Synthesized hydrogel surface triggers signalling events towards osteogenesis even in the absence of added growth factors. We proposed that this material can be used for effective bone tissue engineering in vitro at low cost.


Acrylates/chemistry , Bone and Bones/metabolism , Hydrogels/chemistry , Osteogenesis , Polysaccharides/chemistry , Tamarindus/chemistry , Tissue Engineering , Animals , Bone and Bones/cytology , Mice , RAW 264.7 Cells , Rats
17.
Macromol Biosci ; 17(3)2017 03.
Article En | MEDLINE | ID: mdl-27767291

Bone related problems are increasing as a consequence of increased life expectancy, disorders in life style, and other medical conditions enforcing the need for functional bones prepared in vitro at affordable cost. Lack of suitable surface which promotes growth of both osteogenic and nonosteogenic cells is a major limitation. Here a novel biomaterial is reported that is synthesized from natural polysaccharide, namely, tamarind kernel polysaccharide (TKP), which is grafted with hydrophilic acrylic acid (AA) by radical polymerization. Modification in surface functionality removes unwanted proteins and alters hydrophilic/hydrophobic balance. TKP-AA is suitable for the growth of different nonosteogenic and osteogenic cells. This material is suitable for osteoblasts and promotes in vitro mineralization and differentiation without the addition of exogenous growth factors. TKP-AA can be used for the growth of mesenchymal stem cell-derived osteoblasts. It is suggested that TKP-AA can potentially be used as a scaffold for diverse cell types and particularly for bone tissue engineering at low cost.


Biocompatible Materials/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Osteogenesis/drug effects , Polysaccharides/chemistry , Animals , Biocompatible Materials/administration & dosage , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Hydrogel, Polyethylene Glycol Dimethacrylate/administration & dosage , Mesenchymal Stem Cells/drug effects , Mice , Osteoblasts/drug effects , Polysaccharides/administration & dosage , Rats , Tissue Scaffolds/chemistry
18.
Sci Rep ; 6: 24929, 2016 04 29.
Article En | MEDLINE | ID: mdl-27125749

Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.


Anti-Bacterial Agents/metabolism , Bacillus subtilis/drug effects , Biofilms/drug effects , Biofilms/growth & development , Cytoskeleton/drug effects , Salmonella typhimurium/drug effects , Silver/metabolism , Animals , Anti-Bacterial Agents/toxicity , Bacillus subtilis/physiology , Cell Line , Cell Survival/drug effects , Mammals , Metal Nanoparticles , Microbial Sensitivity Tests , Salmonella typhimurium/metabolism , Silver/toxicity
19.
PeerJ ; 3: e1310, 2015.
Article En | MEDLINE | ID: mdl-26500819

Transient Receptor Potential cation channel, subfamily Melastatin, member 8 (TRPM8) is involved in detection of cold temperature, different noxious compounds and in execution of thermo- as well as chemo-sensitive responses at cellular levels. Here we explored the molecular evolution of TRPM8 by analyzing sequences from various species. We elucidate that several regions of TRPM8 had different levels of selection pressure but the 4th-5th transmembrane regions remain highly conserved. Analysis of synteny suggests that since vertebrate origin, TRPM8 gene is linked with SPP2, a bone morphogen. TRPM8, especially the N-terminal region of it, seems to be highly variable in human population. We found 16,656 TRPM8 variants in 1092 human genomes with top variations being SNPs, insertions and deletions. A total of 692 missense mutations are also mapped to human TRPM8 protein of which 509 seem to be delateroiours in nature as supported by Polyphen V2, SIFT and Grantham deviation score. Using a highly specific antibody, we demonstrate that TRPM8 is expressed endogenously in the testis of rat and sperm cells of different vertebrates ranging from fish to higher mammals. We hypothesize that TRPM8 had emerged during vertebrate evolution (ca 450 MYA). We propose that expression of TRPM8 in sperm cell and its role in regulating sperm function are important factors that have guided its molecular evolution, and that these understandings may have medical importance.

20.
Carbohydr Polym ; 101: 1033-42, 2014 Jan 30.
Article En | MEDLINE | ID: mdl-24299872

Remodeling of bone by tissue engineering is a realistic option for treating several bone-related pathophysiological ailments such as osteoporosis, bone tumor, bone cancer or abnormal bone development. But, these possibilities are hindered due to lack of proper natural and biodegradable surface on which bone precursor cells can adhere efficiently and grow further. Here we describe the synthesis and characterization of a new hydrogel as an effective surface which can acts as a material for bone tissue engineering. This hydrogel has been prepared by chemically grafting a semi-synthetic polymer with a synthetic monomer, namely hydroxyethyl methacrylate (HEMA). Carboxy methyl tamarind (CMT) was selected as the semi-synthetic polymer. The hydrogel was prepared at different mole ratios and at the ratio of 1:10 (CMT:HEMA) yielded the best hydrogel as characterized by several physico-chemical analysis such as UV spectroscopy, FT-IR spectroscopy and swelling properties. We further demonstrate that this material is suitable for effective adhesion, growth and further clustering of bone precursor cells (RAW 264.7). This material is also compatible for growing other sensitive cells such as neuronal cells (Neuro2a) and human umbilical vein endothelial cells (HUVEC) demonstrating that this surface does not possess any cytotoxicity and is compatible for primary human cells too. We conclude that the hydrogel made of CMT:HEMA at a ratio of 1:10 can be suitable for bone tissue engineering and thus may have clinical as well as commercial application in future.


Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Osteoclasts/cytology , Osteoclasts/drug effects , Polysaccharides/chemistry , Polysaccharides/pharmacology , Tamarindus/chemistry , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Neurons/cytology , Neurons/drug effects , Tissue Engineering , Tissue Scaffolds/chemistry
...