Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Sci Rep ; 14(1): 9700, 2024 04 27.
Article En | MEDLINE | ID: mdl-38678148

Ocular abnormal angiogenesis and edema are featured in several ocular diseases. S1P signaling via S1P1 likely is part of the negative feedback mechanism necessary to maintain vascular health. In this study, we conducted pharmacological experiments to determine whether ASP4058, a sphingosine 1-phosphate receptor 1/5 (S1P1/5) agonist, is useful in abnormal vascular pathology in the eye. First, human retinal microvascular endothelial cells (HRMECs) were examined using vascular endothelial growth factor (VEGF)-induced cell proliferation and hyperpermeability. ASP4058 showed high affinity and inhibited VEGF-induced proliferation and hyperpermeability of HRMECs. Furthermore, S1P1 expression and localization changes were examined in the murine laser-induced choroidal neovascularization (CNV) model, a mouse model of exudative age-related macular degeneration, and the efficacy of ASP4058 was verified. In the CNV model mice, S1P1 tended to decrease in expression immediately after laser irradiation and colocalized with endothelial cells and Müller glial cells. Oral administration of ASP4058 also suppressed vascular hyperpermeability and CNV, and the effect was comparable to that of the intravitreal administration of aflibercept, an anti-VEGF drug. Next, efficacy was also examined in a retinal vein occlusion (RVO) model in which retinal vascular permeability was increased. ASP4058 dose-dependently suppressed the intraretinal edema. In addition, it suppressed the expansion of the perfusion area observed in the RVO model. ASP4058 also suppressed the production of VEGF in the eye. Collectively, ASP4058 can be a potential therapeutic agent that normalizes abnormal vascular pathology, such as age-related macular degeneration and RVO, through its direct action on endothelial cells.


Choroidal Neovascularization , Disease Models, Animal , Animals , Humans , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Mice , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/agonists , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Cell Proliferation/drug effects , Mice, Inbred C57BL , Receptors, Lysosphingolipid/agonists , Receptors, Lysosphingolipid/metabolism , Male
2.
Commun Biol ; 6(1): 16, 2023 01 06.
Article En | MEDLINE | ID: mdl-36609683

Microorganisms living at many sites in the human body compose a complex and dynamic community. Accumulating evidence suggests a significant role for microorganisms in cancer, and therapies that incorporate bacteria have been tried in various types of cancer. We previously demonstrated that cupredoxin azurin secreted by the opportunistic pathogen Pseudomonas aeruginosa, enters human cancer cells and induces apoptotic death1-4. However, the physiological interactions between P. aeruginosa and humans and their role in tumor homeostasis are largely unknown. Here, we show that P. aeruginosa upregulated azurin secretion in response to increasing numbers of and proximity to cancer cells. Conversely, cancer cells upregulated aldolase A secretion in response to increasing proximity to P. aeruginosa, which also correlated with enhanced P. aeruginosa adherence to cancer cells. Additionally, we show that cancer patients had detectable P. aeruginosa and azurin in their tumors and exhibited increased overall survival when they did, and that azurin administration reduced tumor growth in transgenic mice. Our results suggest host-bacterial symbiotic mutualism acting as a diverse adjunct to the host defense system via inter-kingdom communication mediated by the evolutionarily conserved proteins azurin and human aldolase A. This improved understanding of the symbiotic relationship of bacteria with humans indicates the potential contribution to tumor homeostasis.


Azurin , Neoplasms , Mice , Animals , Humans , Azurin/genetics , Azurin/metabolism , Azurin/pharmacology , Pseudomonas aeruginosa/metabolism , Fructose-Bisphosphate Aldolase , Neoplasms/genetics , Cell Physiological Phenomena
3.
Opt Express ; 30(15): 27825-27840, 2022 Jul 18.
Article En | MEDLINE | ID: mdl-36236944

Incoherent digital holography (IDH) with a sequential phase-shifting method enables high-definition 3D imaging under incoherent lights. However, sequential recording of multiple holograms renders IDH impractical for 3D videography. In this study, we propose grating-based in-line geometric-phase-shifting IDH. Our method divides orthogonal circularly polarized lights into four copies with a fabricated phase grating and subsequently creates self-interference holograms with geometric phases introduced by a segmented linear polarizer. This enables single-shot recording of holograms without the need for a specially designed image sensor, such as a polarization-sensitive sensor. Moreover, the achievable spatial resolution is higher than that of off-axis methods. As a proof-of-principle experiment, we demonstrated snapshot and video recording of 3D reflective objects using our IDH method. The results confirmed the feasibility of the proposed method.

4.
J Med Chem ; 65(10): 7371-7379, 2022 05 26.
Article En | MEDLINE | ID: mdl-35544687

Precise identification of the tumor margins during breast-conserving surgery (BCS) remains a challenge given the lack of visual discrepancy between malignant and surrounding normal tissues. Therefore, we developed a fluorescent imaging agent, ICG-p28, for intraoperative imaging guidance to better aid surgeons in achieving negative margins in BCS. Here, we determined the pharmacokinetics (PK), biodistribution, and preclinical toxicity of ICG-p28. The PK and biodistribution of ICG-p28 indicated rapid tissue uptake and localization at tumor lesions. There were no dose-related effect and no significant toxicity in any of the breast cancer and normal cell lines tested. Furthermore, ICG-p28 was evaluated in clinically relevant settings with transgenic mice that spontaneously developed invasive mammary tumors. Intraoperative imaging with ICG-p28 showed a significant reduction in the tumor recurrence rate. This simple, nontoxic, and cost-effective method can offer a new approach that enables surgeons to intraoperatively identify tumor margins and potentially improves overall outcomes by reducing recurrence rates.


Breast Neoplasms , Mastectomy, Segmental , Animals , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Diagnostic Imaging , Female , Humans , Margins of Excision , Mastectomy, Segmental/methods , Mice , Optical Imaging/methods , Tissue Distribution
5.
Brain Dev ; 44(7): 486-491, 2022 Aug.
Article En | MEDLINE | ID: mdl-35351320

INTRODUCTION: Methyl-CpG binding protein 2 gene (MECP2) is located on the X chromosome (Xq28) and is important for nervous and immune system functioning. Patients with MECP2 duplication syndrome (MDS) have recurrent respiratory infections (RRIs). Although RRIs often occur with MDS because some patients with MDS also have hypoimmunoglobulinemia and duplication of the interleukin-1-receptor-associated kinase-1 gene (IRAK1), which is also located on Xq28, the phenotype of IRAK1 duplication in patients with MDS remains unclear. METHODS: The clinical course of three patients with MDS who underwent laryngotracheal separation (LTS) at two institutions was summarized. RESULTS: Three patients with MDS were identified to have recurrent pneumonia characteristic of aspiration pneumonia, sometimes requiring artificial ventilation therapy; they had no other bacterial infections. After LTS, they rarely had pneumonia. In MDS, MECP2 expression increased two-fold naturally, while IRAK-1 expression showed no difference compared with a healthy subject. CONCLUSIONS: Since RRIs in MDS are thought to be caused by aspiration and not susceptibility to infection previously estimated to be major complication, the evaluation of aspiration is recommended for RRIs for better management of MDS.


Mental Retardation, X-Linked , Pneumonia , Respiration Disorders , Gene Duplication , Humans , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Phenotype , Pneumonia/complications , Pneumonia/genetics , Respiration Disorders/genetics
6.
EBioMedicine ; 76: 103850, 2022 Feb.
Article En | MEDLINE | ID: mdl-35108666

BACKGROUND: Given the lack of visual discrepancy between malignant and surrounding normal tissue, current breast conserving surgery (BCS) is associated with a high re-excision rate. Due to the increasing cases of BCS, a novel method of complete tumour removal at the initial surgical resection is critically needed in the operating room to help optimize the surgical procedure and to confirm tumour-free edges. METHODS: We developed a unique near-infrared (NIR) fluorescence imaging probe, ICG-p28, composed of the clinically nontoxic tumour-targeting peptide p28 and the FDA-approved NIR dye indocyanine green (ICG). ICG-p28 was characterized in vitro and evaluated in multiple breast cancer animal models with appropriate control probes. Our experimental approach with multiple-validations and -blinded procedures was designed to determine whether ICG-p28 can accurately identify tumour margins in mimicked intraoperative settings. FINDINGS: The in vivo kinetics were analysed to optimize settings for potential clinical use. Xenograft tumours stably expressing iRFP as a tumour marker showed significant colocalization with ICG-p28, but not ICG alone. Image-guided surgery with ICG-p28 showed an over 6.6 × 103-fold reduction in residual normalized tumour DNA at the margin site relative to control approaches (i.e., surgery with ICG or palpation/visible inspection alone), resulting in an improved tumour recurrence rate (92% specificity) in multiple breast cancer animal models independent of the receptor expression status. ICG-p28 allowed accurate identification of tumour cells in the margin to increase the complete resection rate. INTERPRETATION: Our simple and cost-effective approach has translational potential and offers a new surgical procedure that enables surgeons to intraoperatively identify tumour margins in a real-time, 3D fashion and that notably improves overall outcomes by reducing re-excision rates. FUNDING: This work was supported by NIH/ National Institute of Biomedical Imaging and Bioengineering, R01EB023924.


Neoplasm Recurrence, Local , Surgery, Computer-Assisted , Animals , Humans , Indocyanine Green , Margins of Excision , Optical Imaging/methods , Surgery, Computer-Assisted/methods
7.
Methods Mol Biol ; 2394: 857-865, 2022.
Article En | MEDLINE | ID: mdl-35094362

Precise surgical resection directly influences the prognosis and survival of patients with solid tumors. However, it is often difficult to distinguish tumor from normal tissue during resection without any intraoperative imaging guidance. Image-guided surgery particularly when coupled with a near-infrared (NIR) fluorescent agent may improve positive-margin rate thereby improving the overall prognosis. We have developed a unique tumor-targeting fluorescence imaging agent that can aid in the accurate localization of human cancer cells in preclinical settings. The NIR imaging agent, ICG-p28, a water-soluble, nontoxic, and pan-tumor targeting probe consisting of a cell-penetrating peptide (p28) conjugated to indocyanine green (ICG), can accurately localize tumors in vivo. Development of the noninvasive, targeted imaging agent can potentially improve in the resections of tumors by enabling the localization of lesions that are currently difficult or impossible to detect by visual observation or palpation. Here, we describe the methods of preclinical animal imaging models by using NIR fluorescence imager coupled with a new tumor-targeting agent.


Fluorescent Dyes , Neoplasms , Animals , Humans , Indocyanine Green , Neoplasms/diagnostic imaging , Optical Imaging/methods , Peptides
8.
J Opt Soc Am A Opt Image Sci Vis ; 38(7): 924-932, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-34263747

Incoherent digital holography (IDH) enables passive 3D imaging through the self-interference of incoherent light. IDH imaging properties are dictated by the numerical aperture and optical layout in a complex manner [Opt. Express27, 33634 (2019)OPEXFF1094-408710.1364/OE.27.033634]. We develop an IDH simulation model to provide insight into its basic operation and imaging properties. The simulation is based on the scalar diffraction theory. Incoherent irradiance and self-interference holograms are numerically represented by the intensity-based summation of each propagation through finite aperture optics from independent point sources. By comparing numerical and experimental results, the applicability, accuracy, and limitation of the simulation are discussed. The developed simulation would be useful in optimizing the IDH setup.

9.
Appl Opt ; 60(18): 5392-5398, 2021 Jun 20.
Article En | MEDLINE | ID: mdl-34263778

Incoherent digital holography (IDH) requires no spatial coherence; however, it requires high temporal coherence for a light source to capture holograms with high spatial resolution. Temporal coherence is often enhanced with a bandpass filter, reducing the light utilization efficiency. Thus, there is a trade-off between spatial resolution and light utilization efficiency. In this paper, we derive a relationship between spatial resolution and temporal coherence by including a conceptual aperture, determined by temporal coherence, in our previous theory of spatial resolution for arbitrary depth planes [Opt. Express27, 33634 (2019)OPEXFF1094-408710.1364/OE.27.033634]. Experimental evaluations verified the effectiveness of our theory, which is useful for the optimization of IDH setups and avoiding the trade-off.

10.
J Autism Dev Disord ; 51(12): 4655-4662, 2021 Dec.
Article En | MEDLINE | ID: mdl-33590427

Although genetic factors are involved in the etiology of autism spectrum disorder (ASD), the significance of genetic analysis in clinical settings is unclear. Forty-nine subjects diagnosed with non-syndromic ASD were analyzed by microarray comparative genomic hybridization (CGH) analysis, whole-exome sequencing (WES) analysis, and panel sequencing analysis for 52 common causative genes of ASD to detect inherited rare variants. Genetic analysis by microarray CGH and WES analyses showed conclusive results in about 10% of patients, however, many inherited variants detected by panel sequencing analysis were difficult to interpret and apply in clinical practice in the majority of patients. Further improvement of interpretation of many variants detected would be necessary for combined genetic tests to be used in clinical settings.


Autism Spectrum Disorder , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Comparative Genomic Hybridization , DNA Copy Number Variations , Genetic Predisposition to Disease , Genetic Testing , Genomics , Humans
11.
Hum Mutat ; 42(1): 50-65, 2021 01.
Article En | MEDLINE | ID: mdl-33131168

Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.


DNA Copy Number Variations , Exome , Algorithms , Exome/genetics , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Reproducibility of Results , Exome Sequencing
13.
Epileptic Disord ; 22(2): 214-218, 2020 Apr 01.
Article En | MEDLINE | ID: mdl-32301722

Ring chromosome 20 syndrome is an epileptic and neurodevelopmental encephalopathy that occurs in children, characterised by a triad of refractory frontal lobe seizures, recurrent non-convulsive status epilepticus and frontal lobe-dominant paroxysmal discharges. However, details of other clinical features associated with ring chromosome 20 syndrome remain unknown. Here, we report two patients with ring chromosome 20 syndrome who had praxis-induced reflex seizures. Case 1 was an 11-year-old girl who presented with seizures triggered by specific activities such as mental and written calculations, writing, decision-making, recall, sudden changes in routine or ambient temperature and bathing. During calculations, left frontal lobe-dominant, 3-Hz slow-wave bursts were observed on EEG. Lacosamide effectively suppressed her tonic seizures. Case 2 was a six-year-old boy who presented with seizures triggered by specific activities such as calculations, recall and bathing. During calculations, frontal lobe-dominant, 3-Hz spike and slow-wave bursts were observed on EEG. Although his epilepsy was refractory, gabapentin reduced the frequency of focal seizures. In both cases, the hyperexcitability in the frontal lobe may have spread to the motor cortex and precipitated praxis-induced seizures. Therefore, in addition to the known characteristic triad, praxis-induced reflex seizures may also be a feature of ring chromosome 20 syndrome.


Epilepsy, Reflex/etiology , Epilepsy, Reflex/physiopathology , Ring Chromosomes , Activities of Daily Living , Child , Electroencephalography , Female , Humans , Japan , Male , Thinking/physiology
14.
Brain Dev ; 41(5): 465-469, 2019 May.
Article En | MEDLINE | ID: mdl-30739820

Mutations in the mitochondrial tRNAMet gene have been reported in only five patients to date, all of whom presented with muscle weakness and exercise intolerance as signs of myopathy. We herein report the case of a 12-year-old girl with focal epilepsy since the age of eight years. At age 11, the patient developed sudden visual disturbances and headaches accompanied by recurrent, stroke-like episodes with lactic acidosis (pH 7.279, lactic acid 11.6 mmol/L). The patient frequently developed a delirious state, exhibited regression of intellectual ability. Brain magnetic resonance imaging revealed high-intensity signals on T2-weighted images of the left occipital lobe. Mitochondrial gene analysis revealed a heteroplasmic m.4450G > A mutation in the mitochondrial tRNAMet. The heteroplasmic rate of the m.4450G > A mutation in blood, skin, urinary sediment, hair, saliva, and nail samples were 20, 38, 59, 41, 27, and 35%, respectively. The patient's fibroblast showed an approximately 53% reduction in the oxygen consumption rate, compared to a control, and decreased complex I and IV activities. Stroke-like episodes, lactic acidosis, encephalopathy with brain magnetic resonance imaging findings, and declined mitochondrial function were consistent with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. To our knowledge, the findings associated with this first patient with MELAS syndrome harboring the m.4450G > A mutation in mitochondrial tRNAMet expand the phenotypic spectrum of tRNAMet gene.


MELAS Syndrome/diagnosis , MELAS Syndrome/genetics , MELAS Syndrome/physiopathology , RNA, Mitochondrial/genetics , RNA, Transfer, Met/genetics , Child , Female , Humans
17.
J Neurol Sci ; 385: 49-56, 2018 02 15.
Article En | MEDLINE | ID: mdl-29406913

BACKGROUND AND OBJECTIVE: Marinesco-Sjögren syndrome (MSS) is an autosomal recessive infantile-onset disorder characterized by cataracts, cerebellar ataxia, and progressive myopathy caused by mutation of SIL1. In mice, a defect in SIL1 causes endoplasmic reticulum (ER) chaperone dysfunction, leading to unfolded protein accumulation and increased ER stress. However, ER stress and the unfolded protein response (UPR) have not been investigated in MSS patient-derived cells. METHODS: Lymphoblastoid cell lines (LCLs) were established from four MSS patients. Spontaneous and tunicamycin-induced ER stress and the UPR were investigated in MSS-LCLs. Expression of UPR markers was analyzed by western blotting. ER stress-induced apoptosis was analyzed by flow cytometry. The cytoprotective effects of ER stress modulators were also examined. RESULTS: MSS-LCLs exhibited increased spontaneous ER stress and were highly susceptible to ER stress-induced apoptosis. The inositol-requiring protein 1α (IRE1α)-X-box-binding protein 1 (XBP1) pathway was mainly upregulated in MSS-LCLs. Tauroursodeoxycholic acid (TUDCA) attenuated ER stress-induced apoptosis. CONCLUSION: MSS patient-derived cells exhibit increased ER stress, an activated UPR, and susceptibility to ER stress-induced death. TUDCA reduces ER stress-induced death of MSS patient-derived cells. The potential of TUDCA as a therapeutic agent for MSS could be explored further in preclinical studies.


Endoplasmic Reticulum Stress/physiology , Lymphocytes/metabolism , Spinocerebellar Degenerations/pathology , Apoptosis/physiology , Cell Line, Transformed , Cell Survival , Child , Female , Flow Cytometry , Guanine Nucleotide Exchange Factors/metabolism , Humans , MAP Kinase Kinase 4/metabolism , MAP Kinase Kinase Kinase 5/metabolism , Male , Membrane Potential, Mitochondrial/physiology , Middle Aged , Spinocerebellar Degenerations/physiopathology , X-Box Binding Protein 1/metabolism , Young Adult
18.
Intern Med ; 57(10): 1425-1428, 2018 May 15.
Article En | MEDLINE | ID: mdl-29321409

Pulmonary embolism (PE) is usually caused by thrombosis or tumor. We report the long-term survival of a patient with PE due to a leiomyosarcoma in the deep vein. A 71-year-old woman complained of dyspnea and swelling of the left lower limb. Computed tomography revealed filling defects in the pulmonary arteries and deep vein. She was diagnosed with PE caused by venous thrombosis and treated with anticoagulant therapy. Her symptoms were prolonged, and D-dimer tests remained negative. Biopsy of the substance in the deep vein revealed leiomyosarcoma. The possibility of PE caused by extravascular or intravascular tumors should be considered when a patient is negative for D-dimer.


Leiomyosarcoma/complications , Lower Extremity/blood supply , Pulmonary Embolism/diagnostic imaging , Pulmonary Embolism/etiology , Vascular Neoplasms/complications , Venous Thrombosis/complications , Aged , Anticoagulants/therapeutic use , Biopsy , Female , Fibrin Fibrinogen Degradation Products/analysis , Humans , Pulmonary Embolism/drug therapy , Tomography, X-Ray Computed , Venous Thrombosis/diagnostic imaging , Venous Thrombosis/drug therapy
19.
Turk J Pediatr ; 60(6): 769-770, 2018.
Article En | MEDLINE | ID: mdl-31365221

Tsukida K, Goto M, Yamaguchi N, Imagawa T, Tamura D, Yamagata T. Rotavirus gastroenteritis-associated urinary tract calculus in an infant. Turk J Pediatr 2018; 60: 769-770. Rotavirus gastroenteritis a severe viral gastroenteritis that occasionally causes post-renal failure with urinary tract calculus. A 15-month-old boy with rotavirus gastroenteritis suffered from pre- and post-renal dysfunction due to dehydration and urinary obstruction, respectively. Careful evaluations using abdominal ultrasound and cautious fluid replacement with urine alkalization led to an improvement in the pre- and post-renal dysfunction.

20.
Brain Dev ; 40(4): 325-329, 2018 Apr.
Article En | MEDLINE | ID: mdl-28965976

SOX9 is responsible for campomelic dysplasia (CMPD). Symptoms of CMPD include recurrent apnea, upper respiratory infection, facial features, and shortening of the lower extremities. The variant acampomelic CMPD (ACMPD) lacks long bone curvature. A patient showed macrocephaly (+3.9 standard deviations [SD]) and minor anomalies, such as hypertelorism, palpebronasal fold, small mandible, and a cleft of soft palate without long bone curvature. From three months of age, he required tracheal intubation and artificial respiration under sedation because of tracheomalacia. Cranial magnetic resonance imaging was normal at one month of age but showed ventriculomegaly, hydrocephaly, and the corpus callosum thinning at two years of age. Exome sequencing revealed a de novo novel mutation, c. 236A>C, p (Q79P), in SOX9. Sox9 is thought to be crucial in neural stem cell development in the central and peripheral nervous system along with Sox8 and Sox10 in mice. In humans, neuronal abnormalities have been reported in cases of CMPD and ACMPD, including relative macrocephaly in 11 out of 22 and mild lateral ventriculomegaly in 2 out of 22 patients. We encountered a two-year old boy with ACMPD presenting with tracheomalacia and macrocephaly with a SOX9 mutation. We described for the first time an ACMPD patient with acquired diminished white matter and corpus callosal thinning, indicating the failure of oligodendrocyte/astrocyte development postnatally. This phenotype suggests that SOX9 plays a crucial role in human central nervous system development. Further cases are needed to clarify the relationship between human neural development and SOX9 mutations.


Campomelic Dysplasia/diagnostic imaging , Campomelic Dysplasia/genetics , Corpus Callosum/diagnostic imaging , SOX9 Transcription Factor/genetics , White Matter/diagnostic imaging , Campomelic Dysplasia/pathology , Campomelic Dysplasia/therapy , Child, Preschool , Corpus Callosum/pathology , Humans , Organ Size , White Matter/pathology
...