Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Med Sci ; 21(8): 1461-1471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903922

RESUMEN

Dasatinib is one of the second-generation tyrosine kinase inhibitors used to treat chronic myeloid leukemia and has a broad target spectrum, including KIT, PDGFR, and SRC family kinases. Due to its broad drug spectrum, dasatinib has been reported at the basic research level to improve athletic performance by eliminating senescent cell removal and to have an effect on muscle diseases such as Duchenne muscular dystrophy, but its effect on myoblasts has not been investigated. In this study, we evaluated the effects of dasatinib on skeletal muscle both under normal conditions and in the regenerating state. Dasatinib suppressed the proliferation and promoted the fusion of C2C12 myoblasts. During muscle regeneration, dasatinib increased the gene expressions of myogenic-related genes (Myod, Myog, and Mymx), and caused abnormally thin muscle fibers on the CTX-induced muscle injury mouse model. From these results, dasatinib changes the closely regulated gene expression pattern of myogenic regulatory factors during muscle differentiation and disrupts normal muscle regeneration. Our data suggest that when using dasatinib, its effects on skeletal muscle should be considered, particularly at regenerating stages.


Asunto(s)
Diferenciación Celular , Dasatinib , Desarrollo de Músculos , Músculo Esquelético , Mioblastos , Regeneración , Dasatinib/farmacología , Animales , Ratones , Regeneración/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/genética , Músculo Esquelético/efectos de los fármacos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/citología , Proliferación Celular/efectos de los fármacos , Humanos , Línea Celular , Inhibidores de Proteínas Quinasas/farmacología
2.
J Vet Med Sci ; 85(7): 781-789, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37258127

RESUMEN

In recent years, strategies targeting ß-cell protection via autoimmune regulation have been suggested as novel and potent immunotherapeutic interventions against type 1 diabetes mellitus (T1D). Here, we investigated the potential of toceranib (TOC), a receptor-type tyrosine kinase (RTK) inhibitor used in veterinary practice, to ameliorate T1D. TOC reversed streptozotocin-induced T1D and improved the abnormalities in muscle and bone metabolism characteristic of T1D. Histopathological examination revealed that TOC significantly suppressed ß-cell depletion and improved glycemic control with restoration of serum insulin levels. However, the effect of TOC on blood glucose levels and insulin secretion capacity is attenuated in chronic T1D, a more ß-cell depleted state. These findings suggest that TOC improves glycemic control by ameliorating the streptozotocin-induced decrease in insulin secretory capacity. Finally, we examined the role of platelet-derived growth factor receptor (PDGFR) inhibition, a target of TOC, and found that inhibition of PDGFR reverses established T1D in mice. Our results show that TOC reverses T1D by preserving islet function via inhibition of RTK. The previously unrecognized pharmacological properties of TOC have been revealed, and these properties could lead to its application in the treatment of T1D in the veterinary field.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinas , Ratones , Animales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/veterinaria , Estreptozocina/uso terapéutico , Pirroles/farmacología , Pirroles/uso terapéutico , Inhibidores de Proteínas Quinasas , Insulinas/uso terapéutico
3.
Exp Anim ; 72(1): 68-76, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36104204

RESUMEN

Tracking metabolic changes in skeletal muscle and bone using animal models of diabetes mellitus (DM) provides important insights for the management of DM complications. In this study, we aimed to establish a method for monitoring changes in body composition characteristics, such as fat mass, skeletal muscle mass (lean mass), bone mineral density, and bone mineral content, during DM progression using a dual-energy X-ray absorptiometry (DXA) system in a mouse model of streptozotocin (STZ)-induced type 1 DM. In the DM model, STZ administration resulted in increased blood glucose levels, increased water and food intake, and decreased body weight. Serum insulin levels were significantly decreased on day 30 of STZ administration. The DXA analysis revealed significant and persistent decreases in fat mass, lower limb skeletal muscle mass, and bone mineral content in DM mice. We measured tibialis anterior (TA) muscle weight and performed a quantitative analysis of tibial microstructure by micro-computed tomography imaging in DM mice. The TA muscle weight of DM mice was significantly lower than that of control mice. In addition, the trabecular bone volume fraction, trabecular thickness, trabecular number, and cortical thickness were significantly decreased in DM mice. Pearson's product-moment correlation coefficient analysis showed a high correlation between the DXA-measured and actual body composition. In conclusion, longitudinal measurement of body composition changes using a DXA system may be useful for monitoring abnormalities in muscle and bone metabolism in animal models of metabolic diseases such as DM mice.


Asunto(s)
Diabetes Mellitus Experimental , Ratones , Animales , Absorciometría de Fotón/métodos , Microtomografía por Rayos X , Densidad Ósea/fisiología , Atrofia Muscular
4.
Cell Death Dis ; 12(1): 11, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33414474

RESUMEN

Liver cirrhosis is a critical health problem associated with several complications, including skeletal muscle atrophy, which adversely affects the clinical outcome of patients independent of their liver functions. However, the precise mechanism underlying liver cirrhosis-induced muscle atrophy has not been elucidated. Here we show that serum factor induced by liver fibrosis leads to skeletal muscle atrophy. Using bile duct ligation (BDL) model of liver injury, we induced liver fibrosis in mice and observed subsequent muscle atrophy and weakness. We developed culture system of human primary myotubes that enables an evaluation of the effects of soluble factors on muscle atrophy and found that serum from BDL mice contains atrophy-inducing factors. This atrophy-inducing effect of BDL mouse serum was mitigated upon inhibition of TNFα signalling but not inhibition of myostatin/activin signalling. The BDL mice exhibited significantly up-regulated serum levels of TNFα when compared with the control mice. Furthermore, the mRNA expression levels of Tnf were markedly up-regulated in the fibrotic liver but not in the skeletal muscles of BDL mice. The gene expression analysis of isolated nuclei revealed that Tnf is exclusively expressed in the non-fibrogenic diploid cell population of the fibrotic liver. These findings reveal the mechanism through which circulating TNFα produced in the damaged liver mediates skeletal muscle atrophy. Additionally, this study demonstrated the importance of inter-organ communication that underlies the pathogenesis of liver cirrhosis.


Asunto(s)
Cirrosis Hepática/patología , Atrofia Muscular/etiología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Atrofia Muscular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...