Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Science ; 383(6690): 1414-1415, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547295

RESUMEN

Surveillance of mitotic timing prevents amplification of damaged cells.


Asunto(s)
Mitosis , Proliferación Celular , Diferenciación Celular
2.
Nucleic Acids Res ; 52(7): 3740-3760, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38321962

RESUMEN

It is well-established that, through canonical functions in transcription and DNA repair, the tumor suppressor p53 plays a central role in safeguarding cells from the consequences of DNA damage. Recent data retrieved in tumor and stem cells demonstrated that p53 also carries out non-canonical functions when interacting with the translesion synthesis (TLS) polymerase iota (POLι) at DNA replication forks. This protein complex triggers a DNA damage tolerance (DDT) mechanism controlling the DNA replication rate. Given that the levels of p53 trigger non-binary rheostat-like functions in response to stress or during differentiation, we explore the relevance of the p53 levels for its DDT functions at the fork. We show that subtle changes in p53 levels modulate the contribution of some DDT factors including POLι, POLη, POLζ, REV1, PCNA, PRIMPOL, HLTF and ZRANB3 to the DNA replication rate. Our results suggest that the levels of p53 are central to coordinate the balance between DDT pathways including (i) fork-deceleration by the ZRANB3-mediated fork reversal factor, (ii) POLι-p53-mediated fork-slowing, (iii) POLι- and POLη-mediated TLS and (iv) PRIMPOL-mediated fork-acceleration. Collectively, our study reveals the relevance of p53 protein levels for the DDT pathway choice in replicating cells.


Asunto(s)
Daño del ADN , ADN Polimerasa iota , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Reparación del ADN , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , ADN Primasa/metabolismo , ADN Primasa/genética , Tolerancia al Daño del ADN
7.
Elife ; 122023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37073955

RESUMEN

The trapping of Poly-ADP-ribose polymerase (PARP) on DNA caused by PARP inhibitors (PARPi) triggers acute DNA replication stress and synthetic lethality (SL) in BRCA2-deficient cells. Hence, DNA damage is accepted as a prerequisite for SL in BRCA2-deficient cells. In contrast, here we show that inhibiting ROCK in BRCA2-deficient cells triggers SL independently from acute replication stress. Such SL is preceded by polyploidy and binucleation resulting from cytokinesis failure. Such initial mitosis abnormalities are followed by other M phase defects, including anaphase bridges and abnormal mitotic figures associated with multipolar spindles, supernumerary centrosomes and multinucleation. SL was also triggered by inhibiting Citron Rho-interacting kinase, another enzyme that, similarly to ROCK, regulates cytokinesis. Together, these observations demonstrate that cytokinesis failure triggers mitotic abnormalities and SL in BRCA2-deficient cells. Furthermore, the prevention of mitotic entry by depletion of Early mitotic inhibitor 1 (EMI1) augmented the survival of BRCA2-deficient cells treated with ROCK inhibitors, thus reinforcing the association between M phase and cell death in BRCA2-deficient cells. This novel SL differs from the one triggered by PARPi and uncovers mitosis as an Achilles heel of BRCA2-deficient cells.


Asunto(s)
Daño del ADN , Mutaciones Letales Sintéticas , Anafase , Mitosis , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Proteína BRCA2/genética , Humanos
8.
Sci Adv ; 9(15): eade7997, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058556

RESUMEN

Recent studies have described a DNA damage tolerance pathway choice that involves a competition between PrimPol-mediated repriming and fork reversal. Screening different translesion DNA synthesis (TLS) polymerases by the use of tools for their depletion, we identified a unique role of Pol ι in regulating such a pathway choice. Pol ι deficiency unleashes PrimPol-dependent repriming, which accelerates DNA replication in a pathway that is epistatic with ZRANB3 knockdown. In Pol ι-depleted cells, the excess participation of PrimPol in nascent DNA elongation reduces replication stress signals, but thereby also checkpoint activation in S phase, triggering chromosome instability in M phase. This TLS-independent function of Pol ι requires its PCNA-interacting but not its polymerase domain. Our findings unravel an unanticipated role of Pol ι in protecting the genome stability of cells from detrimental changes in DNA replication dynamics caused by PrimPol.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Humanos , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/genética , ADN/metabolismo , Reparación del ADN , Daño del ADN , Inestabilidad Cromosómica , ADN Primasa/genética , ADN Primasa/metabolismo , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo
9.
Drug Resist Updat ; 67: 100932, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36706533

RESUMEN

BRCA2 is a well-established cancer driver in several human malignancies. While the remarkable success of PARP inhibitors proved the clinical potential of targeting BRCA deficiencies, the emergence of resistance mechanisms underscores the importance of seeking novel Synthetic Lethal (SL) targets for future drug development efforts. In this work, we performed a BRCA2-centric SL screen with a collection of plant-derived compounds from South America. We identified the steroidal alkaloid Solanocapsine as a selective SL inducer, and we were able to substantially increase its potency by deriving multiple analogs. The use of two complementary chemoproteomic approaches led to the identification of the nucleotide salvage pathway enzyme deoxycytidine kinase (dCK) as Solanocapsine's target responsible for its BRCA2-linked SL induction. Additional confirmatory evidence was obtained by using the highly specific dCK inhibitor (DI-87), which induces SL in multiple BRCA2-deficient and KO contexts. Interestingly, dCK-induced SL is mechanistically different from the one induced by PARP inhibitors. dCK inhibition generates substantially lower levels of DNA damage, and cytotoxic phenotypes are associated exclusively with mitosis, thus suggesting that the fine-tuning of nucleotide supply in mitosis is critical for the survival of BRCA2-deficient cells. Moreover, by using a xenograft model of contralateral tumors, we show that dCK impairment suffices to trigger SL in-vivo. Taken together, our findings unveil dCK as a promising new target for BRCA2-deficient cancers, thus setting the ground for future therapeutic alternatives to PARP inhibitors.


Asunto(s)
Antineoplásicos , Desoxicitidina Quinasa , Humanos , Desoxicitidina Quinasa/genética , Desoxicitidina Quinasa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Nucleótidos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína BRCA2/genética
10.
Cancers (Basel) ; 13(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205328

RESUMEN

Chromosomal instability (CIN) refers to an increased rate of acquisition of numerical and structural changes in chromosomes and is considered an enabling characteristic of tumors. Given its role as a facilitator of genomic changes, CIN is increasingly being considered as a possible therapeutic target, raising the question of which variables may convert CIN into an ally instead of an enemy during cancer treatment. This review discusses the origins of structural chromosome abnormalities and the cellular mechanisms that prevent and resolve them, as well as how different CIN phenotypes relate to each other. We discuss the possible fates of cells containing structural CIN, focusing on how a few cell duplication cycles suffice to induce profound CIN-mediated genome alterations. Because such alterations can promote tumor adaptation to treatment, we discuss currently proposed strategies to either avoid CIN or enhance CIN to a level that is no longer compatible with cell survival.

11.
Nucleic Acids Res ; 49(13): 7457-7475, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34165573

RESUMEN

Using human embryonic, adult and cancer stem cells/stem cell-like cells (SCs), we demonstrate that DNA replication speed differs in SCs and their differentiated counterparts. While SCs decelerate DNA replication, differentiated cells synthesize DNA faster and accumulate DNA damage. Notably, both replication phenotypes depend on p53 and polymerase iota (POLι). By exploring protein interactions and newly synthesized DNA, we show that SCs promote complex formation of p53 and POLι at replication sites. Intriguingly, in SCs the translocase ZRANB3 is recruited to POLι and required for slow-down of DNA replication. The known role of ZRANB3 in fork reversal suggests that the p53-POLι complex mediates slow but safe bypass of replication barriers in SCs. In differentiated cells, POLι localizes more transiently to sites of DNA synthesis and no longer interacts with p53 facilitating fast POLι-dependent DNA replication. In this alternative scenario, POLι associates with the p53 target p21, which antagonizes PCNA poly-ubiquitination and, thereby potentially disfavors the recruitment of translocases. Altogether, we provide evidence for diametrically opposed DNA replication phenotypes in SCs and their differentiated counterparts putting DNA replication-based strategies in the spotlight for the creation of therapeutic opportunities targeting SCs.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Células Madre/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Diferenciación Celular/genética , Células Cultivadas , ADN Helicasas/metabolismo , Células Madre Embrionarias/metabolismo , Humanos , Células Madre Neoplásicas/metabolismo , Estrés Fisiológico/genética , ADN Polimerasa iota
12.
J Mol Biol ; 433(10): 166949, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33744317

RESUMEN

Checkpoint Kinase 1 (Chk1) prevents DNA damage by adjusting the replication choreography in the face of replication stress. Chk1 depletion provokes slow and asymmetrical fork movement, yet the signals governing such changes remain unclear. We sought to investigate whether poly(ADP-ribose) polymerases (PARPs), key players of the DNA damage response, intervene in the DNA replication of Chk1-depleted cells. We demonstrate that PARP inhibition selectively alleviates the reduced fork elongation rates, without relieving fork asymmetry in Chk1-depleted cells. While the contribution of PARPs to fork elongation is not unprecedented, we found that their role in Chk1-depleted cells extends beyond fork movement. PARP-dependent fork deceleration induced mild dormant origin firing upon Chk1 depletion, augmenting the global rates of DNA synthesis. Thus, we have identified PARPs as novel regulators of replication fork dynamics in Chk1-depleted cells.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Replicación del ADN , Poli(ADP-Ribosa) Polimerasas/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Regulación de la Expresión Génica , Humanos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Roscovitina/farmacología , Timidina/análogos & derivados , Timidina/farmacología
13.
Sci Adv ; 6(50)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33298441

RESUMEN

Chromosome instability (CIN) underpins cancer evolution and is associated with drug resistance and poor prognosis. Understanding the mechanistic basis of CIN is thus a priority. The structure-specific endonuclease Mus81-Eme1 is known to prevent CIN. Intriguingly, however, here we show that the aberrant processing of late replication intermediates by Mus81-Eme1 is a source of CIN. Upon depletion of checkpoint kinase 1 (Chk1), Mus81-Eme1 cleaves under-replicated DNA engaged in mitotic DNA synthesis, leading to chromosome segregation defects. Supplementing cells with nucleosides allows the completion of mitotic DNA synthesis, restraining Mus81-Eme1-dependent DNA damage in mitosis and the ensuing CIN. We found no correlation between CIN arising from nucleotide shortage in mitosis and cell death, which were selectively linked to DNA damage load in mitosis and S phase, respectively. Our findings imply the possibility of optimizing Chk1-directed therapies by inducing cell death while curtailing CIN, a common side effect of chemotherapy.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Endodesoxirribonucleasas , Endonucleasas , Inestabilidad Genómica , Mitosis , Inestabilidad Cromosómica , ADN/genética , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos
14.
Mutat Res ; 821: 111725, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33157476

RESUMEN

Cancer cells die when their decimated DNA damage response (DDR) unsuccessfully handles DNA damage. This notion has been successfully exploited when targeting PARP (poly ADP-ribose polymerase) in homologous recombination-deficient cells. With the greater understanding of DDR achieved in the last decade, new cancer therapy targets within the DDR network have been identified. Intriguingly, many of the molecules that have advanced into clinical trials are inhibitors of DDR kinases. This special issue is devoted to discussing the mechanism of cell killing and the level of success that such inhibitors have reached in pre-clinical and clinical settings.


Asunto(s)
Antineoplásicos/uso terapéutico , Daño del ADN , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Reparación del ADN , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Humanos , Neoplasias/genética , Neoplasias/patología
15.
Nucleic Acids Res ; 48(21): 12188-12203, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33166398

RESUMEN

We have previously reported that p53 decelerates nascent DNA elongation in complex with the translesion synthesis (TLS) polymerase ι (POLι) which triggers a homology-directed DNA damage tolerance (DDT) pathway to bypass obstacles during DNA replication. Here, we demonstrate that this DDT pathway relies on multiple p53 activities, which can be disrupted by TP53 mutations including those frequently found in cancer tissues. We show that the p53-mediated DDT pathway depends on its oligomerization domain (OD), while its regulatory C-terminus is not involved. Mutation of residues S315 and D48/D49, which abrogate p53 interactions with the DNA repair and replication proteins topoisomerase I and RPA, respectively, and residues L22/W23, which disrupt formation of p53-POLι complexes, all prevent this DDT pathway. Our results demonstrate that the p53-mediated DDT requires the formation of a DNA binding-proficient p53 tetramer, recruitment of such tetramer to RPA-coated forks and p53 complex formation with POLι. Importantly, our mutational analysis demonstrates that transcriptional transactivation is dispensable for the POLι-mediated DDT pathway, which we show protects against DNA replication damage from endogenous and exogenous sources.


Asunto(s)
Reparación del ADN , ADN-Topoisomerasas de Tipo I/genética , ADN Polimerasa Dirigida por ADN/genética , ADN/genética , Regulación Neoplásica de la Expresión Génica , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , ADN/metabolismo , Daño del ADN , Replicación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Células K562 , Mutación , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/patología , Oxidantes/farmacología , Unión Proteica/efectos de los fármacos , Multimerización de Proteína , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , ADN Polimerasa iota
16.
Cancers (Basel) ; 12(10)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992928

RESUMEN

In this review, we provide an overview of how proliferating eukaryotic cells overcome one of the main threats to genome stability: incomplete genomic DNA replication during S phase. We discuss why it is currently accepted that double fork stalling (DFS) events are unavoidable events in higher eukaryotes with large genomes and which responses have evolved to cope with its main consequence: the presence of under-replicated DNA (UR-DNA) outside S phase. Particular emphasis is placed on the processes that constrain the detrimental effects of UR-DNA. We discuss how mitotic DNA synthesis (MiDAS), mitotic end joining events and 53BP1 nuclear bodies (53BP1-NBs) deal with such specific S phase DNA replication remnants during the subsequent phases of the cell cycle.

17.
Genes (Basel) ; 11(6)2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481484

RESUMEN

p21Waf/CIP1 is a small unstructured protein that binds and inactivates cyclin-dependent kinases (CDKs). To this end, p21 levels increase following the activation of the p53 tumor suppressor. CDK inhibition by p21 triggers cell-cycle arrest in the G1 and G2 phases of the cell cycle. In the absence of exogenous insults causing replication stress, only residual p21 levels are prevalent that are insufficient to inhibit CDKs. However, research from different laboratories has demonstrated that these residual p21 levels in the S phase control DNA replication speed and origin firing to preserve genomic stability. Such an S-phase function of p21 depends fully on its ability to displace partners from chromatin-bound proliferating cell nuclear antigen (PCNA). Vice versa, PCNA also regulates p21 by preventing its upregulation in the S phase, even in the context of robust p21 induction by irradiation. Such a tight regulation of p21 in the S phase unveils the potential that CDK-independent functions of p21 may have for the improvement of cancer treatments.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Replicación del ADN/genética , Antígeno Nuclear de Célula en Proliferación/genética , Quinasas Ciclina-Dependientes/genética , Humanos , Inhibidores de Proteínas Quinasas/metabolismo , Fase S/genética
18.
Oncogene ; 39(19): 3952-3964, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32203168

RESUMEN

The elimination of DNA polymerase eta (pol η) causes discontinuous DNA elongation and fork stalling in UV-irradiated cells. Such alterations in DNA replication are followed by S-phase arrest, DNA double-strand break (DSB) accumulation, and cell death. However, their molecular triggers and the relative timing of these events have not been fully elucidated. Here, we report that DSBs accumulate relatively early after UV irradiation in pol η-depleted cells. Despite the availability of repair pathways, DSBs persist and chromosome instability (CIN) is not detectable. Later on cells with pan-nuclear γH2AX and massive exposure of template single-stranded DNA (ssDNA), which indicate severe replication stress, accumulate and such events are followed by cell death. Reinforcing the causal link between the accumulation of pan-nuclear ssDNA/γH2AX signals and cell death, downregulation of RPA increased both replication stress and the cell death of pol η-deficient cells. Remarkably, DSBs, pan-nuclear ssDNA/γH2AX, S-phase arrest, and cell death are all attenuated by MRE11 nuclease knockdown. Such results suggest that unscheduled MRE11-dependent activities at replicating DNA selectively trigger cell death, but not CIN. Together these results show that pol η-depletion promotes a type of cell death that may be attractive as a therapeutic tool because of the lack of CIN.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , ADN Polimerasa Dirigida por ADN/genética , Histonas/genética , Proteína Homóloga de MRE11/genética , Puntos de Control del Ciclo Celular/efectos de la radiación , Muerte Celular/genética , Inestabilidad Cromosómica/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Replicación del ADN/efectos de la radiación , ADN de Cadena Simple/efectos de la radiación , Humanos , Fase S/efectos de la radiación , Rayos Ultravioleta/efectos adversos
19.
Cancers (Basel) ; 12(3)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192055

RESUMEN

In this Special Issue, we would like to focus on the various functions of the RAD52 helicase-like protein and the current implications of such findings for cancer treatment. Over the last few years, various laboratories have discovered particular activities of mammalian RAD52-both in S and M phase-that are distinct from the auxiliary role of yeast RAD52 in homologous recombination. At DNA double-strand breaks, RAD52 was demonstrated to spur alternative pathways to compensate for the loss of homologous recombination functions. At collapsed replication forks, RAD52 activates break-induced replication. In the M phase, RAD52 promotes the finalization of DNA replication. Its compensatory role in the resolution of DNA double-strand breaks has put RAD52 in the focus of synthetic lethal strategies, which is particularly relevant for cancer treatment.

20.
J Cell Biol ; 218(12): 3883-3884, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31685532

RESUMEN

ETAA1 activates the master checkpoint kinase ATR. Bass and Cortez (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201810058) recently reported an intra-mitotic function of ETAA1 that safeguards chromosome stability. In this issue, Achuthankutty et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201905064) describe a mechanism controlling the ATR-activating potential of ETAA1 in S phase to preserve chromosome stability.


Asunto(s)
Segregación Cromosómica , Mitosis , Fase S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA