Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 84
1.
Sci Rep ; 14(1): 11909, 2024 05 24.
Article En | MEDLINE | ID: mdl-38789721

T cells recirculate through tissues and lymphatic organs to scan for their cognate antigen. Radiation therapy provides site-specific cytotoxicity to kill cancer cells but also has the potential to eliminate the tumor-specific T cells in field. To dynamically study the effect of radiation on CD8 T cell recirculation, we used the Kaede mouse model to photoconvert tumor-infiltrating cells and monitor their movement out of the field of radiation. We demonstrate that radiation results in loss of CD8 T cell recirculation from the tumor to the lymph node and to distant sites. Using scRNASeq, we see decreased proliferating CD8 T cells in the tumor following radiation therapy resulting in a proportional enrichment in exhausted phenotypes. By contrast, 5 days following radiation increased recirculation of T cells from the tumor to the tumor draining lymph node corresponds with increased immunosurveillance of the treated tumor. These data demonstrate that tumor radiation therapy transiently impairs systemic T cell recirculation from the treatment site to the draining lymph node and distant untreated tumors. This may inform timing therapies to improve systemic T cell-mediated tumor immunity.


CD8-Positive T-Lymphocytes , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymph Nodes/radiation effects , Lymph Nodes/pathology , Lymph Nodes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/radiotherapy , Neoplasms/immunology , Neoplasms/pathology , Cell Tracking/methods , Cell Line, Tumor , Mice, Inbred C57BL , Fluorescence
2.
Int Rev Cell Mol Biol ; 378: 61-104, 2023.
Article En | MEDLINE | ID: mdl-37438021

Dendritic cells perform critical functions in bridging innate and adaptive immunity. Their ability to sense adjuvant signals in their environment, migrate on maturation, and cross-present cell-associated antigens enables these cells to carry antigen from tissue sites to lymph nodes, and thereby prime naïve T cells that cannot enter tissues. Despite being an infrequent cell type in tumors, we discuss how dendritic cells impact the immune environment of tumors and their response to cancer therapies. We review how radiation therapy of tumors can impact dendritic cells, through transfer of cell associated antigens to dendritic cells and the release of endogenous adjuvants, resulting in increased antigen presentation in the tumor-draining lymph nodes. We explore how tumor specific factors can result in negative regulation of dendritic cell function in the tumor, and the impact of direct radiation exposure to dendritic cells in the treatment field. These data suggest an important role for dendritic cell subpopulations in activating new T cell responses and boosting existing T cell responses to tumor associated antigens in tumor draining lymph nodes following radiation therapy. It further justifies a focus on the needs of the lymph node T cells to improve systemic anti-immunity following radiation therapy.


Adaptive Immunity , Antigen Presentation , Dendritic Cells
3.
Front Oral Health ; 4: 1180869, 2023.
Article En | MEDLINE | ID: mdl-37496754

Although treatment modalities for head and neck cancer have evolved considerably over the past decades, survival rates have plateaued. The treatment options remained limited to definitive surgery, surgery followed by fractionated radiotherapy with optional chemotherapy, and a definitive combination of fractionated radiotherapy and chemotherapy. Lately, immunotherapy has been introduced as the fourth modality of treatment, mainly administered as a single checkpoint inhibitor for recurrent or metastatic disease. While other regimens and combinations of immunotherapy and targeted therapy are being tested in clinical trials, adapting the appropriate regimens to patients and predicting their outcomes have yet to reach the clinical setting. Radiotherapy is mainly regarded as a means to target cancer cells while minimizing the unwanted peripheral effect. Radiotherapy regimens and fractionation are designed to serve this purpose, while the systemic effect of radiation on the immune response is rarely considered a factor while designing treatment. To bridge this gap, this review will highlight the effect of radiotherapy on the tumor microenvironment locally, and the immune response systemically. We will review the methodology to identify potential targets for therapy in the tumor microenvironment and the scientific basis for combining targeted therapy and radiotherapy. We will describe a current experience in preclinical models to test these combinations and propose how challenges in this realm may be faced. We will review new players in targeted therapy and their utilization to drive immunogenic response against head and neck cancer. We will outline the factors contributing to head and neck cancer heterogeneity and their effect on the response to radiotherapy. We will review in-silico methods to decipher intertumoral and intratumoral heterogeneity and how these algorithms can predict treatment outcomes. We propose that (a) the sequence of surgery, radiotherapy, chemotherapy, and targeted therapy should be designed not only to annul cancer directly, but to prime the immune response. (b) Fractionation of radiotherapy and the extent of the irradiated field should facilitate systemic immunity to develop. (c) New players in targeted therapy should be evaluated in translational studies toward clinical trials. (d) Head and neck cancer treatment should be personalized according to patients and tumor-specific factors.

4.
Sci Rep ; 13(1): 8634, 2023 05 27.
Article En | MEDLINE | ID: mdl-37244938

Radiation therapy induces immunogenic cell death in cancer cells, whereby released endogenous adjuvants are sensed by immune cells to direct adaptive immune responses. TLRs expressed on several immune subtypes recognize innate adjuvants to direct downstream inflammatory responses in part via the adapter protein MyD88. We generated Myd88 conditional knockout mice to interrogate its contribution to the immune response to radiation therapy in distinct immune populations in pancreatic cancer. Surprisingly, Myd88 deletion in Itgax (CD11c)-expressing dendritic cells had little discernable effects on response to RT in pancreatic cancer and elicited normal T cell responses using a prime/boost vaccination strategy. Myd88 deletion in Lck-expressing T cells resulted in similar or worsened responses to radiation therapy compared to wild-type mice and lacked antigen-specific CD8+ T cell responses from vaccination, similar to observations in Myd88-/- mice. Lyz2-specific loss of Myd88 in myeloid populations rendered tumors more susceptible to radiation therapy and elicited normal CD8+ T cell responses to vaccination. scRNAseq in Lyz2-Cre/Myd88fl/fl mice revealed gene signatures in macrophages and monocytes indicative of enhanced type I and II interferon responses, and improved responses to RT were dependent on CD8+ T cells and IFNAR1. Together, these data implicate MyD88 signaling in myeloid cells as a critical source of immunosuppression that hinders adaptive immune tumor control following radiation therapy.


CD8-Positive T-Lymphocytes , Pancreatic Neoplasms , Mice , Animals , Myeloid Differentiation Factor 88/metabolism , Monocytes/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/radiotherapy , Mice, Knockout , Adjuvants, Immunologic/metabolism , Mice, Inbred C57BL , Pancreatic Neoplasms
5.
Sci Rep ; 13(1): 6277, 2023 04 18.
Article En | MEDLINE | ID: mdl-37072485

Tissue resident memory (Trm) CD8 T cells infiltrating tumors represent an enriched population of tumor antigen-specific T cells, and their presence is associated with improved outcomes in patients. Using genetically engineered mouse pancreatic tumor models we demonstrate that tumor implantation generates a Trm niche that is dependent on direct antigen presentation by cancer cells. However, we observe that initial CCR7-mediated localization of CD8 T cells to tumor draining lymph nodes is required to subsequently generate CD103+ CD8 T cells in tumors. We observe that the formation of CD103+ CD8 T cells in tumors is dependent on CD40L but independent of CD4 T cells, and using mixed chimeras we show that CD8 T cells can provide their own CD40L to permit CD103+ CD8 T cell differentiation. Finally, we show that CD40L is required to provide systemic protection against secondary tumors. These data suggest that CD103+ CD8 T cell formation in tumors can occur independent of the two-factor authentication provided by CD4 T cells and highlight CD103+ CD8 T cells as a distinct differentiation decision from CD4-dependent central memory.


Immunologic Memory , Neoplasms , Animals , Mice , CD40 Ligand , Neoplasms/pathology , CD8-Positive T-Lymphocytes , Lymphocyte Activation
6.
Methods Cell Biol ; 174: 55-63, 2023.
Article En | MEDLINE | ID: mdl-36710051

The response to radiation therapy incorporates both the direct impacts of radiation on cancer cells as well as the immune consequences that can help or hinder control of residual disease. Understanding the response of an individual patient's cancer to radiation, and the impact of radiation on the immune cell subsets present in the tumor prior to radiation therapy, can help identify potential predictors of outcome. Here, we describe a methodological approach to using an explant tumor model to characterize and study the immune cell subsets in murine tumors following exposure to ex vivo radiation treatment. The broader tumor environment incorporates distinct microenvironments consisting of tumor stroma and cancer cell nests, with limited interchange between these zones. Ex vivo analysis of tumor explants ensures that these environments remain intact and allows patient-specific response assessments with a broader range of treatment conditions to find optimal conditions and immunotherapy combinations. While this protocol describes the treatment of murine tumors, with minor variations the same protocol can be used to study and characterize various immune populations following radiation therapy in human tumors.


Neoplasms , Humans , Animals , Mice , Neoplasms/radiotherapy , Immunotherapy/methods , Tumor Microenvironment
7.
Sci Rep ; 12(1): 14954, 2022 Sep 02.
Article En | MEDLINE | ID: mdl-36056093

Multiple preclinical studies have shown improved outcomes when radiation therapy is combined with immune modulating antibodies. However, to date, many of these promising results have failed to translate to successful clinical studies. This led us to explore additional checkpoint and co-stimulatory pathways that may be regulated by radiation therapy. Here, we demonstrate that radiation increases the expression of inducible T cell co-stimulator (ICOS) on both CD4 and CD8 T cells in the blood following treatment. Moreover, when we combined a novel ICOS agonist antibody with radiation we observed durable cures across multiple tumor models and mouse strains. Depletion studies revealed that CD8 T cells were ultimately required for treatment efficacy, but CD4 T cells and NK cells also partially contributed to tumor control. Phenotypic analysis showed that the combination therapy diminished the increased infiltration of regulatory T cells into the tumor that typically occurs following radiation alone. Finally, we demonstrate in a poorly immunogenic pancreatic tumor model which is resistant to combined radiation and anti-PD1 checkpoint blockade that the addition of this novel ICOS agonist antibody to the treatment regimen results in tumor control. These findings identify ICOS as part of a T cell pathway that is modulated by radiation and targeting this pathway with a novel ICOS antibody results in durable tumor control in preclinical models.


CD8-Positive T-Lymphocytes , Neoplasms , Animals , Antibodies/metabolism , CD4-Positive T-Lymphocytes , Inducible T-Cell Co-Stimulator Protein/metabolism , Mice , Neoplasms/metabolism , T-Lymphocytes, Regulatory
8.
Front Oral Health ; 3: 902160, 2022.
Article En | MEDLINE | ID: mdl-35937775

The clinical response to cancer therapies involves the complex interplay between the systemic, tumoral, and stromal immune response as well as the direct impact of treatments on cancer cells. Each individual's immunological and cancer histories are different, and their carcinogen exposures may differ. This means that even though two patients with oral tumors may carry an identical mutation in TP53, they are likely to have different pre-existing immune responses to their tumors. These differences may arise due to their distinct accessory mutations, genetic backgrounds, and may relate to clinical factors including previous chemotherapy exposure and concurrent medical comorbidities. In isolation, their cancer cells may respond similarly to cancer therapy, but due to their baseline variability in pre-existing immune responses, patients can have different responses to identical therapies. In this review we discuss how the immune environment of tumors develops, the critical immune cell populations in advanced cancers, and how immune interventions can manipulate the immune environment of patients with pre-malignancies or advanced cancers to improve therapeutic outcomes.

9.
Lancet Oncol ; 23(9): 1189-1200, 2022 09.
Article En | MEDLINE | ID: mdl-35952709

BACKGROUND: TGF-ß is an immunosuppressive cytokine that is upregulated in colorectal cancer. TGF-ß blockade improved response to chemoradiotherapy in preclinical models of colorectal adenocarcinoma. We aimed to test the hypothesis that adding the TGF-ß type I receptor kinase inhibitor galunisertib to neoadjuvant chemoradiotherapy would improve pathological complete response rates in patients with locally advanced rectal cancer. METHODS: This was an investigator-initiated, single-arm, phase 2 study done in two medical centres in Portland (OR, USA). Eligible patients had previously untreated, locally advanced, rectal adenocarcinoma, stage IIA-IIIC or IV as per the American Joint Committee on Cancer; Eastern Cooperative Oncology Group status 0-2; and were aged 18 years or older. Participants completed two 14-day courses of oral galunisertib 150 mg twice daily, before and during fluorouracil-based chemoradiotherapy (intravenous fluorouracil 225 mg/m2 over 24 h daily 7 days per week during radiotherapy or oral capecitabine 825 mg/m2 twice per day 5 days per week during radiotherapy; radiotherapy consisted of 50·4-54·0 Gy in 28-30 fractions). 5-9 weeks later, patients underwent response assessment. Patients with a complete response could opt for non-operative management and proceed to modified FOLFOX6 (intravenous leucovorin 400 mg/m2 on day 1, intravenous fluorouracil 400 mg/m2 on day 1 then 2400 mg/m2 over 46 h, and intravenous oxaliplatin 85 mg/m2 on day 1 delivered every 2 weeks for eight cycles) or CAPEOX (intravenous oxaliplatin 130 mg/m2 on day 1 and oral capecitabine 1000 mg/m2 twice daily for 14 days every 3 weeks for four cycles). Patients with less than complete response underwent surgical resection. The primary endpoint was complete response rate, which was a composite of pathological complete response in patients who proceeded to surgery, or clinical complete response maintained at 1 year after last therapy in patients with non-operative management. Safety was a coprimary endpoint. Both endpoints were assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT02688712, and is active but not recruiting. FINDINGS: Between Oct 19, 2016, and Aug 31, 2020, 38 participants were enrolled. 25 (71%) of the 35 patients who completed chemoradiotherapy proceeded to total mesorectal excision surgery, five (20%) of whom had pathological complete responses. Ten (29%) patients had non-operative management, three (30%) of whom ultimately chose to have total mesorectal excision. Two (67%) of those three patients had pathological complete responses. Of the remaining seven patients in the non-operative management group, five (71%) had clinical complete responses at 1 year after their last modified FOLFOX6 infusion. In total, 12 (32% [one-sided 95% CI ≥19%]) of 38 patients had a complete response. Common grade 3 adverse events during treatment included diarrhoea in six (16%) of 38 patients, and haematological toxicity in seven (18%) patients. Two (5%) patients had grade 4 adverse events, one related to chemoradiotherapy-induced diarrhoea and dehydration, and the other an intraoperative ischaemic event. No treatment-related deaths occurred. INTERPRETATION: The addition of galunisertib to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer improved the complete response rate to 32%, was well tolerated, and warrants further assessment in randomised trials. FUNDING: Eli Lilly via ExIST program, The Providence Foundation.


Adenocarcinoma , Neoplasms, Second Primary , Rectal Neoplasms , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Capecitabine , Chemoradiotherapy/adverse effects , Diarrhea/etiology , Fluorouracil , Humans , Neoadjuvant Therapy/adverse effects , Neoplasm Staging , Neoplasms, Second Primary/pathology , Oxaliplatin , Pyrazoles , Quinolines , Rectal Neoplasms/drug therapy , Rectal Neoplasms/pathology , Transforming Growth Factor beta
10.
Neoplasia ; 31: 100808, 2022 09.
Article En | MEDLINE | ID: mdl-35691060

In this review we consider what appears to be a paradox in immunotherapies based around radiation therapy. The paradox is based on three main points. 1. That T cells are needed for radiation's efficacy; 2. That tumor-specific T cells are enriched in the field of treatment; and 3. That radiation kills T cells in the treatment field. We discuss evidence of the effect of radiation on T cells in the field given their ongoing movement in and out of tissues and the tumor, and how the movement of T cells impacts the treated primary tumor and untreated distant metastases. Given this evidence, we revisit the paradox to understand how the extraordinary efficacy of radiation and immunity in preclinical models is dependent on this radiation sensitive cell.


Neoplasms , T-Lymphocytes , Humans , Immunotherapy
11.
Life Sci Alliance ; 5(9)2022 09.
Article En | MEDLINE | ID: mdl-35487695

Radiation therapy generates extensive cancer cell death capable of promoting tumor-specific immunity. Within the tumor, conventional dendritic cells (cDCs) are known to carry tumor-associated antigens to the draining lymph node (TdLN) where they initiate T-cell priming. How radiation influences cDC migration is poorly understood. Here, we show that immunological efficacy of radiation therapy is dependent on cDC migration in radioimmunogenic tumors. Using photoconvertible mice, we demonstrate that radiation impairs cDC migration to the TdLN in poorly radioimmunogenic tumors. Comparative transcriptional analysis revealed that cDCs in radioimmunogenic tumors express genes associated with activation of endogenous adjuvant signaling pathways when compared with poorly radioimmunogenic tumors. Moreover, an exogenous adjuvant combined with radiation increased the number of migrating cDCs in these poorly radioimmunogenic tumors. Taken together, our data demonstrate that cDC migration play a critical role in the response to radiation therapy.


Dendritic Cells , Lymph Nodes , Animals , Mice , T-Lymphocytes
12.
Sci Rep ; 11(1): 16347, 2021 08 11.
Article En | MEDLINE | ID: mdl-34381163

Gamma-delta (γδ) T cells express T cell receptors (TCR) that are preconfigured to recognize signs of pathogen infection. In primates, γδ T cells expressing the Vγ9Vδ2 TCR innately recognize (E)-4-hydroxy-3-methyl-but- 2-enyl pyrophosphate (HMBPP), a product of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway in bacteria that is presented in infected cells via interaction with members of the B7 family of costimulatory molecules butyrophilin (BTN) 3A1 and BTN2A1. In humans, Listeria monocytogenes (Lm) vaccine platforms have the potential to generate potent Vγ9Vδ2 T cell recognition. To evaluate the activation of Vγ9Vδ2 T cells by Lm-infected human monocyte-derived dendritic cells (Mo-DC) we engineered Lm strains that lack components of the MEP pathway. Direct infection of Mo-DC with these bacteria were unchanged in their ability to activate CD107a expression in Vγ9Vδ2 T cells despite an inability to synthesize HMBPP. Importantly, functional BTN3A1 was essential for this activation. Unexpectedly, we found that cytoplasmic entry of Lm into human dendritic cells resulted in upregulation of cholesterol metabolism in these cells, and the effect of pathway regulatory drugs suggest this occurs via increased synthesis of the alternative endogenous Vγ9Vδ2 ligand isoprenyl pyrophosphate (IPP) and/or its isomer dimethylallyl pyrophosphate (DMAPP). Thus, following direct infection, host pathways regulated by cytoplasmic entry of Lm can trigger Vγ9Vδ2 T cell recognition of infected cells without production of the unique bacterial ligand HMBPP.


Dendritic Cells/immunology , Listeria monocytogenes/immunology , Monocytes/immunology , Organophosphates/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Butyrophilins/immunology , Cells, Cultured , Hemiterpenes/immunology , Humans , Lymphocyte Activation/immunology , Lysosomal-Associated Membrane Protein 1/immunology , Organophosphorus Compounds/immunology , Protein Binding/immunology
13.
Oncotarget ; 12(13): 1201-1213, 2021 Jun 22.
Article En | MEDLINE | ID: mdl-34194619

Surgical resection of head and neck squamous-cell carcinoma (HNSCC) is associated with high rates of local and distant recurrence, partially mitigated by adjuvant therapy. A pre-existing immune response in the patient's tumor is associated with better outcomes following treatment with conventional therapies, but improved options are needed for patients with poor anti-tumor immunity. We hypothesized that local delivery of tumor antigen-specific T-cells into the resection cavity following surgery would direct T-cells to residual antigens in the margins and draining lymphatics and present a platform for T-cell-targeted immunotherapy. We loaded T-cells into a biomaterial that conformed to the resection cavity and demonstrated that it could release T-cells that retained their functional activity in-vitro, and in a HNSCC model in-vivo. Locally delivered T-cells loaded in a biomaterial were equivalent in control of established tumors to intravenous adoptive T-cell transfer, and resulted in the systemic circulation of tumor antigen-specific T-cells as well as local accumulation in the tumor. We demonstrate that adjuvant therapy with anti-PD1 following surgical resection was ineffective unless combined with local delivery of T-cells. These data demonstrate that local delivery of tumor-specific T-cells is an efficient option to convert tumors that are unresponsive to checkpoint inhibitors to permit tumor cures.

14.
Front Oncol ; 11: 653625, 2021.
Article En | MEDLINE | ID: mdl-33968757

Analysis of tumor infiltration using conventional methods reveals a snapshot view of lymphocyte interactions with the tumor environment. However, lymphocytes have the unique capacity for continued recirculation, exploring varied tissues for the presence of cognate antigens according to inflammatory triggers and chemokine gradients. We discuss the role of the inflammatory and cellular makeup of the tumor environment, as well as antigen expressed by cancer cells or cross-presented by stromal antigen presenting cells, on recirculation kinetics of T cells. We aim to discuss how current cancer therapies may manipulate lymphocyte recirculation versus retention to impact lymphocyte exclusion in the tumor.

15.
Front Oncol ; 11: 667075, 2021.
Article En | MEDLINE | ID: mdl-33816320

In the cancer literature tumors are inconsistently labeled as 'immunogenic', and experimental results are occasionally dismissed since they are only tested in known 'responsive' tumor models. The definition of immunogenicity has moved from its classical definition based on the rejection of secondary tumors to a more nebulous definition based on immune infiltrates and response to immunotherapy interventions. This review discusses the basis behind tumor immunogenicity and the variation between tumor models, then moves to discuss how these principles apply to the response to radiation therapy. In this way we can identify radioimmunogenic tumor models that are particularly responsive to immunotherapy only when combined with radiation, and identify the interventions that can convert unresponsive tumors so that they can also respond to these treatments.

16.
Cancer Res ; 81(12): 3255-3269, 2021 06 15.
Article En | MEDLINE | ID: mdl-33526513

Stromal fibrosis activates prosurvival and proepithelial-to-mesenchymal transition (EMT) pathways in pancreatic ductal adenocarcinoma (PDAC). In patient tumors treated with neoadjuvant stereotactic body radiation therapy (SBRT), we found upregulation of fibrosis, extracellular matrix (ECM), and EMT gene signatures, which can drive therapeutic resistance and tumor invasion. Molecular, functional, and translational analysis identified two cell-surface proteins, a disintegrin and metalloprotease 10 (ADAM10) and ephrinB2, as drivers of fibrosis and tumor progression after radiation therapy (RT). RT resulted in increased ADAM10 expression in tumor cells, leading to cleavage of ephrinB2, which was also detected in plasma. Pharmacologic or genetic targeting of ADAM10 decreased RT-induced fibrosis and tissue tension, tumor cell migration, and invasion, sensitizing orthotopic tumors to radiation killing and prolonging mouse survival. Inhibition of ADAM10 and genetic ablation of ephrinB2 in fibroblasts reduced the metastatic potential of tumor cells after RT. Stimulation of tumor cells with ephrinB2 FC protein reversed the reduction in tumor cell invasion with ADAM10 ablation. These findings represent a model of PDAC adaptation that explains resistance and metastasis after RT and identifies a targetable pathway to enhance RT efficacy. SIGNIFICANCE: Targeting a previously unidentified adaptive resistance mechanism to radiation therapy in PDAC tumors in combination with radiation therapy could increase survival of the 40% of PDAC patients with locally advanced disease.See related commentary by Garcia Garcia et al., p. 3158 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3255/F1.large.jpg.


ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Carcinoma, Pancreatic Ductal/radiotherapy , Epithelial-Mesenchymal Transition , Fibrosis/pathology , Gamma Rays/adverse effects , Membrane Proteins/metabolism , Pancreatic Neoplasms/radiotherapy , Radiation Injuries/pathology , ADAM10 Protein/antagonists & inhibitors , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/genetics , Animals , Antifibrotic Agents/therapeutic use , Apoptosis , Carcinoma, Pancreatic Ductal/pathology , Cell Movement , Cell Proliferation , Ephrin-B2/blood , Female , Fibrosis/drug therapy , Fibrosis/etiology , Fibrosis/metabolism , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/pathology , Prognosis , Radiation Injuries/drug therapy , Radiation Injuries/etiology , Radiation Injuries/metabolism , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
Cancer Immunol Immunother ; 70(4): 989-1000, 2021 Apr.
Article En | MEDLINE | ID: mdl-33097963

Pancreatic ductal adenocarcinoma (PDAC) has a heterogeneous tumor microenvironment (TME) comprised of myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages, neutrophils, regulatory T cells, and myofibroblasts. The precise mechanisms that regulate the composition of the TME and how they contribute to radiotherapy (RT) response remain poorly understood. In this study, we analyze changes in immune cell populations and circulating chemokines in patient samples and animal models of pancreatic cancer to characterize the immune response to radiotherapy. Further, we identify STAT3 as a key mediator of immunosuppression post-RT. We found granulocytic MDSCs (G-MDSCs) and neutrophils to be increased in response to RT in murine and human PDAC samples. We also found that RT-induced STAT3 phosphorylation correlated with increased MDSC infiltration and proliferation. Targeting STAT3 using an anti-sense oligonucleotide in combination with RT circumvented RT-induced MDSC infiltration, enhanced the proportion of effector T cells, and improved response to RT. In addition, STAT3 inhibition contributed to the remodeling of the PDAC extracellular matrix when combined with RT, resulting in decreased collagen deposition and fibrotic tissue formation. Collectively, our data provide evidence that targeting STAT3 in combination with RT can mitigate the pro-tumorigenic effects of RT and improve tumor response.


Carcinoma, Pancreatic Ductal/radiotherapy , Gamma Rays , Myeloid-Derived Suppressor Cells/immunology , Oligonucleotides, Antisense/genetics , Pancreatic Neoplasms/radiotherapy , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Apoptosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Female , Humans , Immunosuppression Therapy , Mice , Mice, Inbred C57BL , Mice, Nude , Myeloid-Derived Suppressor Cells/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Prognosis , STAT3 Transcription Factor/genetics , T-Lymphocytes, Regulatory/immunology , Tumor Cells, Cultured , Tumor Microenvironment
18.
PLoS One ; 15(8): e0238380, 2020.
Article En | MEDLINE | ID: mdl-32866185

Pancreatic adenocarcinoma is characterized by a complex tumor environment with a wide diversity of infiltrating stromal and immune cell types that impact the tumor response to conventional treatments. However, even in this poorly responsive tumor the extent of T cell infiltration as determined by quantitative immunohistology is a candidate prognostic factor for patient outcome. As such, even more comprehensive immunophenotyping of the tumor environment, such as immune cell type deconvolution via inference models based on gene expression profiling, holds significant promise. We hypothesized that RNA-Seq can provide a comprehensive alternative to quantitative immunohistology for immunophenotyping pancreatic cancer. We performed RNA-Seq on a prospective cohort of pancreatic tumor specimens and compared multiple approaches for gene expression-based immunophenotyping analysis compared to quantitative immunohistology. Our analyses demonstrated that while gene expression analyses provide additional information on the complexity of the tumor immune environment, they are limited in sensitivity by the low overall immune infiltrate in pancreatic cancer. As an alternative approach, we identified a set of genes that were enriched in highly T cell infiltrated pancreatic tumors, and demonstrate that these can identify patients with improved outcome in a reference population. These data demonstrate that the poor immune infiltrate in pancreatic cancer can present problems for analyses that use gene expression-based tools; however, there remains enormous potential in using these approaches to understand the relationships between diverse patterns of infiltrating cells and their impact on patient treatment outcomes.


Lymphocytes, Tumor-Infiltrating/immunology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adult , Aged , Aged, 80 and over , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/immunology , Humans , Male , Middle Aged , Prospective Studies , T-Lymphocytes/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
19.
Sci Rep ; 10(1): 7376, 2020 04 30.
Article En | MEDLINE | ID: mdl-32355214

Radiation therapy has been shown to enhance the efficacy of various T cell-targeted immunotherapies that improve antigen-specific T cell expansion, T regulatory cell depletion, or effector T cell function. Additionally, radiation therapy has been proposed as a means to recruit T cells to the treatment site and modulate cancer cells as effector T cell targets. The significance of these features remains unclear. We set out to determine, in checkpoint inhibitor resistant models, which components of radiation are primarily responsible for overcoming this resistance. In order to model the vaccination effect of radiation, we used a Listeria monocytogenes based vaccine to generate a large population of tumor antigen specific T cells but found that the presence of cells with cytotoxic capacity was unable to replicate the efficacy of radiation with combination checkpoint blockade. Instead, we demonstrated that a major role of radiation was to increase the susceptibility of surviving cancer cells to CD8+ T cell-mediated control through enhanced MHC-I expression. We observed a novel mechanism of genetic induction of MHC-I in cancer cells through upregulation of the MHC-I transactivator NLRC5. These data support the critical role of local modulation of tumors by radiation to improve tumor control with combination immunotherapy.


CD8-Positive T-Lymphocytes/immunology , Gene Expression Regulation, Neoplastic/immunology , Histocompatibility Antigens Class I/immunology , Immunity, Cellular , Intracellular Signaling Peptides and Proteins/immunology , Membrane Proteins/immunology , Neoplasm Proteins/immunology , Neoplasms, Experimental/immunology , Transcription, Genetic/immunology , Up-Regulation/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cell Line, Tumor , Histocompatibility Antigens Class I/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/therapy , Radiotherapy
20.
Semin Radiat Oncol ; 30(2): 158-172, 2020 04.
Article En | MEDLINE | ID: mdl-32381295

Immunotherapies are rapidly entering the clinic as approved treatments for diverse cancer pathologies. Radiation therapy is an integral partner in cancer therapy, commonly as part of complicated multimodality approaches that optimize patient outcomes. Preclinical studies have demonstrated that the success of radiation therapy in tumor control is due in part to immune mechanisms, and that outcomes following radiation therapy can be improved through combination with a range of immunotherapies. However, preclinical models of cancer are very different from patient tumors, and the way these preclinical tumors are treated is often very different from standard of care treatment of patients. This review examines the preclinical and clinical data for the role of the immune system in radiation therapy outcomes, and how to integrate preclinical findings into clinical trials, using ongoing studies as examples.


Clinical Trials as Topic , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/radiotherapy , Research Design , Animals , Combined Modality Therapy , Disease Models, Animal , Humans
...