Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(15): 5495-5504, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37018471

RESUMEN

Superhydrophobic coatings have garnered significant research interest due to their potential applications in areas such as ant-icing and windows. This study focuses on the development of superhydrophobic coatings using air-assisted electrospray and the effect of different carbon additives as templates in the coating. Carbon templates, with their unique topological varieties, offer a cost-effective alternative to other patterning technologies such as photolithography. By introducing dispersed carbon black, carbon nanotubes, and graphene additives in TEOS solution, silica is given the ability of localized secondary growth on or around the carbon surfaces as well as the building structure to provide adequate roughness on the substrate surface. The templated silica formations provide a thin coating with nano-scale roughness for heightened water resistance. As compared with the template-free coating that has small silica particles, a surface roughness of 135 nm, and a water contact angle (WCA) of 101.6° (non-superhydrophobic), the carbon templating effect allowed for increased silica particle size, a surface roughness as high as 845 nm, a WCA above 160°, and the ability to maintain superhydrophobicity over 30 abrasion cycles. The morphological characteristics that resulted from the templating effect correlate directly with heightened performance of the coatings. Herein, the carbon additives have been found to serve as cheap and effective templates for silica formation in thin TEOS-derived superhydrophobic coatings.

2.
Langmuir ; 38(9): 2852-2861, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35192772

RESUMEN

Superhydrophobic surface is an enabling technology in numerous emerging and practical applications such as self-cleaning, anticorrosion, antifouling, anti-icing coatings, and oil-water separation. Here, we report a facile air-assisted electrospray approach to achieve a superhydrophobic surface by systematically studying spray conditions and the chemistry of a coating precursor solution consisting of silicon dioxide nanoparticles, polyacrylonitrile, and N,N-dimethylformamide. The wettability behavior of the surface was analyzed with contact angle measurement and correlated with surface structures. The superhydrophobic coating exhibits remarkable water and oil repellent characteristics, as well as good robustness against abrasion and harsh chemical conditions. This air-assisted electrospray technique has shown great control over the coating process and properties and thus can be potentially used for various advanced industrial applications for self-cleaning and anticorrosion surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...