Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
NPJ Genom Med ; 9(1): 35, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38898085

HPV infections are associated with a fraction of vulvar cancers. Through hybridization capture and DNA sequencing, HPV DNA was detected in five of thirteen vulvar cancers. HPV16 DNA was integrated into human DNA in three of the five. The insertions were in introns of human NCKAP1, C5orf67, and LRP1B. Integrations in NCKAP1 and C5orf67 were flanked by short direct repeats in the human DNA, consistent with HPV DNA insertions at sites of abortive, staggered, endonucleolytic incisions. The insertion in C5orf67 was present as a 36 kbp, human-HPV-hetero-catemeric DNA as either an extrachromosomal circle or a tandem repeat within the human genome. The human circularization/repeat junction was defined at single nucleotide resolution. The integrated viral DNA segments all retained an intact upstream regulatory region and the adjacent viral E6 and E7 oncogenes. RNA sequencing revealed that the only HPV genes consistently transcribed from the integrated viral DNAs were E7 and E6*I. The other two HPV DNA+ tumors had coinfections, but no evidence for integration. HPV-positive and HPV-negative vulvar cancers exhibited contrasting human, global gene expression patterns partially overlapping with previously observed differences between HPV-positive and HPV-negative cervical and oropharyngeal cancers. A substantial fraction of the differentially expressed genes involved immune system function. Thus, transcription and HPV DNA integration in vulvar cancers resemble those in other HPV-positive cancers. This study emphasizes the power of hybridization capture coupled with DNA and RNA sequencing to identify a broad spectrum of HPV types, determine human genome integration status of viral DNAs, and elucidate their structures.

2.
Nucleic Acids Res ; 52(D1): D1053-D1061, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37953328

Recent technological developments in spatial transcriptomics allow researchers to measure gene expression of cells and their spatial locations at the single-cell level, generating detailed biological insight into biological processes. A comprehensive database could facilitate the sharing of spatial transcriptomic data and streamline the data acquisition process for researchers. Here, we present the Spatial TranscriptOmics DataBase (STOmicsDB), a database that serves as a one-stop hub for spatial transcriptomics. STOmicsDB integrates 218 manually curated datasets representing 17 species. We annotated cell types, identified spatial regions and genes, and performed cell-cell interaction analysis for these datasets. STOmicsDB features a user-friendly interface for the rapid visualization of millions of cells. To further facilitate the reusability and interoperability of spatial transcriptomic data, we developed standards for spatial transcriptomic data archiving and constructed a spatial transcriptomic data archiving system. Additionally, we offer a distinctive capability of customizing dedicated sub-databases in STOmicsDB for researchers, assisting them in visualizing their spatial transcriptomic analyses. We believe that STOmicsDB could contribute to research insights in the spatial transcriptomics field, including data archiving, sharing, visualization and analysis. STOmicsDB is freely accessible at https://db.cngb.org/stomics/.


Databases, Genetic , Gene Expression Profiling , Transcriptome , Information Dissemination
3.
Nature ; 624(7991): 317-332, 2023 Dec.
Article En | MEDLINE | ID: mdl-38092916

The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.


Brain , Gene Expression Profiling , Transcriptome , Animals , Mice , Brain/anatomy & histology , Brain/cytology , Brain/metabolism , Datasets as Topic , In Situ Hybridization, Fluorescence , Neural Pathways , Neurons/classification , Neurons/metabolism , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , RNA/analysis , Single-Cell Gene Expression Analysis , Transcription Factors/metabolism , Transcriptome/genetics
4.
bioRxiv ; 2023 Mar 06.
Article En | MEDLINE | ID: mdl-37034735

The mammalian brain is composed of millions to billions of cells that are organized into numerous cell types with specific spatial distribution patterns and structural and functional properties. An essential step towards understanding brain function is to obtain a parts list, i.e., a catalog of cell types, of the brain. Here, we report a comprehensive and high-resolution transcriptomic and spatial cell type atlas for the whole adult mouse brain. The cell type atlas was created based on the combination of two single-cell-level, whole-brain-scale datasets: a single-cell RNA-sequencing (scRNA-seq) dataset of ~7 million cells profiled, and a spatially resolved transcriptomic dataset of ~4.3 million cells using MERFISH. The atlas is hierarchically organized into five nested levels of classification: 7 divisions, 32 classes, 306 subclasses, 1,045 supertypes and 5,200 clusters. We systematically analyzed the neuronal, non-neuronal, and immature neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell type organization in different brain regions, in particular, a dichotomy between the dorsal and ventral parts of the brain: the dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. We also systematically characterized cell-type specific expression of neurotransmitters, neuropeptides, and transcription factors. The study uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types across the brain, suggesting they mediate a myriad of modes of intercellular communications. Finally, we found that transcription factors are major determinants of cell type classification in the adult mouse brain and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole-mouse-brain transcriptomic and spatial cell type atlas establishes a benchmark reference atlas and a foundational resource for deep and integrative investigations of cell type and circuit function, development, and evolution of the mammalian brain.

5.
Nat Genet ; 54(8): 1178-1191, 2022 08.
Article En | MEDLINE | ID: mdl-35902743

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and treatment-refractory cancer. Molecular stratification in pancreatic cancer remains rudimentary and does not yet inform clinical management or therapeutic development. Here, we construct a high-resolution molecular landscape of the cellular subtypes and spatial communities that compose PDAC using single-nucleus RNA sequencing and whole-transcriptome digital spatial profiling (DSP) of 43 primary PDAC tumor specimens that either received neoadjuvant therapy or were treatment naive. We uncovered recurrent expression programs across malignant cells and fibroblasts, including a newly identified neural-like progenitor malignant cell program that was enriched after chemotherapy and radiotherapy and associated with poor prognosis in independent cohorts. Integrating spatial and cellular profiles revealed three multicellular communities with distinct contributions from malignant, fibroblast and immune subtypes: classical, squamoid-basaloid and treatment enriched. Our refined molecular and cellular taxonomy can provide a framework for stratification in clinical trials and serve as a roadmap for therapeutic targeting of specific cellular phenotypes and multicellular interactions.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Gene Expression Profiling , Humans , Neoadjuvant Therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Prognosis , Transcriptome/genetics , Pancreatic Neoplasms
6.
Nature ; 595(7865): 107-113, 2021 07.
Article En | MEDLINE | ID: mdl-33915569

COVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.


COVID-19/pathology , COVID-19/virology , Kidney/pathology , Liver/pathology , Lung/pathology , Myocardium/pathology , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , Atlases as Topic , Autopsy , Biological Specimen Banks , COVID-19/genetics , COVID-19/immunology , Endothelial Cells , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Fibroblasts , Genome-Wide Association Study , Heart/virology , Humans , Inflammation/pathology , Inflammation/virology , Kidney/virology , Liver/virology , Lung/virology , Male , Middle Aged , Organ Specificity , Phagocytes , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , RNA, Viral/analysis , Regeneration , SARS-CoV-2/immunology , Single-Cell Analysis , Viral Load
7.
bioRxiv ; 2021 Feb 25.
Article En | MEDLINE | ID: mdl-33655247

The SARS-CoV-2 pandemic has caused over 1 million deaths globally, mostly due to acute lung injury and acute respiratory distress syndrome, or direct complications resulting in multiple-organ failures. Little is known about the host tissue immune and cellular responses associated with COVID-19 infection, symptoms, and lethality. To address this, we collected tissues from 11 organs during the clinical autopsy of 17 individuals who succumbed to COVID-19, resulting in a tissue bank of approximately 420 specimens. We generated comprehensive cellular maps capturing COVID-19 biology related to patients' demise through single-cell and single-nucleus RNA-Seq of lung, kidney, liver and heart tissues, and further contextualized our findings through spatial RNA profiling of distinct lung regions. We developed a computational framework that incorporates removal of ambient RNA and automated cell type annotation to facilitate comparison with other healthy and diseased tissue atlases. In the lung, we uncovered significantly altered transcriptional programs within the epithelial, immune, and stromal compartments and cell intrinsic changes in multiple cell types relative to lung tissue from healthy controls. We observed evidence of: alveolar type 2 (AT2) differentiation replacing depleted alveolar type 1 (AT1) lung epithelial cells, as previously seen in fibrosis; a concomitant increase in myofibroblasts reflective of defective tissue repair; and, putative TP63+ intrapulmonary basal-like progenitor (IPBLP) cells, similar to cells identified in H1N1 influenza, that may serve as an emergency cellular reserve for severely damaged alveoli. Together, these findings suggest the activation and failure of multiple avenues for regeneration of the epithelium in these terminal lungs. SARS-CoV-2 RNA reads were enriched in lung mononuclear phagocytic cells and endothelial cells, and these cells expressed distinct host response transcriptional programs. We corroborated the compositional and transcriptional changes in lung tissue through spatial analysis of RNA profiles in situ and distinguished unique tissue host responses between regions with and without viral RNA, and in COVID-19 donor tissues relative to healthy lung. Finally, we analyzed genetic regions implicated in COVID-19 GWAS with transcriptomic data to implicate specific cell types and genes associated with disease severity. Overall, our COVID-19 cell atlas is a foundational dataset to better understand the biological impact of SARS-CoV-2 infection across the human body and empowers the identification of new therapeutic interventions and prevention strategies.

8.
Mol Ther ; 28(12): 2577-2592, 2020 12 02.
Article En | MEDLINE | ID: mdl-32755564

T cells engineered to express chimeric antigen receptors (CARs) targeting CD19 have produced impressive outcomes for the treatment of B cell malignancies, but different products vary in kinetics, persistence, and toxicity profiles based on the co-stimulatory domains included in the CAR. In this study, we performed transcriptional profiling of bulk CAR T cell populations and single cells to characterize the transcriptional states of human T cells transduced with CD3ζ, 4-1BB-CD3ζ (BBζ), or CD28-CD3ζ (28ζ) co-stimulatory domains at rest and after activation by triggering their CAR or their endogenous T cell receptor (TCR). We identified a transcriptional signature common across CARs with the CD3ζ signaling domain, as well as a distinct program associated with the 4-1BB co-stimulatory domain at rest and after activation. CAR T cells bearing BBζ had increased expression of human leukocyte antigen (HLA) class II genes, ENPP2, and interleukin (IL)-21 axis genes, and decreased PD1 compared to 28ζ CAR T cells. Similar to previous studies, we also found BBζ CAR CD8 T cells to be enriched in a central memory cell phenotype and fatty acid metabolism genes. Our data uncovered transcriptional signatures related to costimulatory domains and demonstrated that signaling domains included in CARs uniquely shape the transcriptional programs of T cells.


4-1BB Ligand/chemistry , 4-1BB Ligand/metabolism , Cell Engineering/methods , Protein Domains/genetics , RNA, Small Cytoplasmic/genetics , Receptors, Chimeric Antigen/genetics , Signal Transduction/genetics , T-Lymphocytes/metabolism , Transcriptome , HEK293 Cells , Humans , K562 Cells , RNA-Seq/methods , Single-Cell Analysis , Transduction, Genetic
9.
Nat Methods ; 17(8): 793-798, 2020 08.
Article En | MEDLINE | ID: mdl-32719530

Massively parallel single-cell and single-nucleus RNA sequencing has opened the way to systematic tissue atlases in health and disease, but as the scale of data generation is growing, so is the need for computational pipelines for scaled analysis. Here we developed Cumulus-a cloud-based framework for analyzing large-scale single-cell and single-nucleus RNA sequencing datasets. Cumulus combines the power of cloud computing with improvements in algorithm and implementation to achieve high scalability, low cost, user-friendliness and integrated support for a comprehensive set of features. We benchmark Cumulus on the Human Cell Atlas Census of Immune Cells dataset of bone marrow cells and show that it substantially improves efficiency over conventional frameworks, while maintaining or improving the quality of results, enabling large-scale studies.


Cloud Computing/economics , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Computational Biology/economics , High-Throughput Nucleotide Sequencing/economics , Sequence Analysis, RNA/economics
11.
Nat Med ; 26(5): 792-802, 2020 05.
Article En | MEDLINE | ID: mdl-32405060

Single-cell genomics is essential to chart tumor ecosystems. Although single-cell RNA-Seq (scRNA-Seq) profiles RNA from cells dissociated from fresh tumors, single-nucleus RNA-Seq (snRNA-Seq) is needed to profile frozen or hard-to-dissociate tumors. Each requires customization to different tissue and tumor types, posing a barrier to adoption. Here, we have developed a systematic toolbox for profiling fresh and frozen clinical tumor samples using scRNA-Seq and snRNA-Seq, respectively. We analyzed 216,490 cells and nuclei from 40 samples across 23 specimens spanning eight tumor types of varying tissue and sample characteristics. We evaluated protocols by cell and nucleus quality, recovery rate and cellular composition. scRNA-Seq and snRNA-Seq from matched samples recovered the same cell types, but at different proportions. Our work provides guidance for studies in a broad range of tumors, including criteria for testing and selecting methods from the toolbox for other tumors, thus paving the way for charting tumor atlases.


Algorithms , Cell Nucleus/genetics , Genomics/methods , Neoplasms/genetics , RNA-Seq/methods , Single-Cell Analysis/methods , Adult , Animals , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Child , Computational Biology/methods , Female , Freezing , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Knockout , Mice, Nude , Neoplasms/metabolism , Neoplasms/pathology , Sequence Analysis, RNA/methods , Tumor Cells, Cultured , Exome Sequencing/methods
12.
Nat Methods ; 16(10): 987-990, 2019 10.
Article En | MEDLINE | ID: mdl-31501547

Spatial and molecular characteristics determine tissue function, yet high-resolution methods to capture both concurrently are lacking. Here, we developed high-definition spatial transcriptomics, which captures RNA from histological tissue sections on a dense, spatially barcoded bead array. Each experiment recovers several hundred thousand transcript-coupled spatial barcodes at 2-µm resolution, as demonstrated in mouse brain and primary breast cancer. This opens the way to high-resolution spatial analysis of cells and tissues.


Gene Expression Profiling , Transcriptome , Animals , Breast Neoplasms/pathology , Female , Humans , Mice , Olfactory Bulb/cytology , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Tissue Array Analysis
14.
Cell ; 176(4): 928-943.e22, 2019 02 07.
Article En | MEDLINE | ID: mdl-30712874

Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.


Cellular Reprogramming/genetics , Gene Expression Profiling/methods , Single-Cell Analysis/methods , Animals , Cell Differentiation/genetics , Cells, Cultured , Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , Gene Expression , Gene Expression Regulation, Developmental/genetics , Induced Pluripotent Stem Cells/metabolism , Mice , Sequence Analysis, RNA/methods , Transcription Factors/metabolism
15.
Bioinformatics ; 35(8): 1427-1429, 2019 04 15.
Article En | MEDLINE | ID: mdl-30203022

MOTIVATION: Facilitated by technological improvements, pharmacologic and genetic perturbational datasets have grown in recent years to include millions of experiments. Sharing and publicly distributing these diverse data creates many opportunities for discovery, but in recent years the unprecedented size of data generated and its complex associated metadata have also created data storage and integration challenges. RESULTS: We present the GCTx file format and a suite of open-source packages for the efficient storage, serialization and analysis of dense two-dimensional matrices. We have extensively used the format in the Connectivity Map to assemble and share massive datasets currently comprising 1.3 million experiments, and we anticipate that the format's generalizability, paired with code libraries that we provide, will lower barriers for integrated cross-assay analysis and algorithm development. AVAILABILITY AND IMPLEMENTATION: Software packages (available in Python, R, Matlab and Java) are freely available at https://github.com/cmap. Additional instructions, tutorials and datasets are available at clue.io/code. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Metadata , Software , Algorithms , Information Storage and Retrieval
16.
Cell Syst ; 6(4): 424-443.e7, 2018 Apr 25.
Article En | MEDLINE | ID: mdl-29655704

Although the value of proteomics has been demonstrated, cost and scale are typically prohibitive, and gene expression profiling remains dominant for characterizing cellular responses to perturbations. However, high-throughput sentinel assays provide an opportunity for proteomics to contribute at a meaningful scale. We present a systematic library resource (90 drugs × 6 cell lines) of proteomic signatures that measure changes in the reduced-representation phosphoproteome (P100) and changes in epigenetic marks on histones (GCP). A majority of these drugs elicited reproducible signatures, but notable cell line- and assay-specific differences were observed. Using the "connectivity" framework, we compared signatures across cell types and integrated data across assays, including a transcriptional assay (L1000). Consistent connectivity among cell types revealed cellular responses that transcended lineage, and consistent connectivity among assays revealed unexpected associations between drugs. We further leveraged the resource against public data to formulate hypotheses for treatment of multiple myeloma and acute lymphocytic leukemia. This resource is publicly available at https://clue.io/proteomics.


Databases, Factual , Phosphoproteins/drug effects , Algorithms , Cell Line , Chromatography, Liquid , Datasets as Topic , Gene Expression Regulation , Histone Code , Humans , Mass Spectrometry , Pharmacological and Toxicological Phenomena , Phosphoproteins/metabolism , Proteomics , Signal Transduction , Software
17.
Cell ; 171(6): 1437-1452.e17, 2017 Nov 30.
Article En | MEDLINE | ID: mdl-29195078

We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs, and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.


Gene Expression Profiling/methods , Cell Line, Tumor , Drug Resistance, Neoplasm , Gene Expression Profiling/economics , Humans , Neoplasms/drug therapy , Organ Specificity , Pharmaceutical Preparations/metabolism , Sequence Analysis, RNA/economics , Sequence Analysis, RNA/methods , Small Molecule Libraries
19.
Sci Transl Med ; 8(363): 363ra147, 2016 11 02.
Article En | MEDLINE | ID: mdl-27807282

Multiple myeloma (MM) remains an incurable disease, with a treatment-refractory state eventually developing in all patients. Constant clonal evolution and genetic heterogeneity of MM are a likely explanation for the emergence of drug-resistant disease. Monitoring of MM genomic evolution on therapy by serial bone marrow biopsy is unfortunately impractical because it involves an invasive and painful procedure. We describe how noninvasive and highly sensitive isolation and characterization of circulating tumor cells (CTCs) from peripheral blood at single-cell resolution recapitulate MM in the bone marrow. We demonstrate that CTCs provide the same genetic information as bone marrow MM cells and even reveal mutations with greater sensitivity than bone marrow biopsies in some cases. Single CTC RNA sequencing enables classification of MM and quantitative assessment of genes that are relevant for prognosis. We propose that the genomic characterization of CTCs should be included in clinical trials to follow the emergence of resistant subclones after MM therapy.


Bone Marrow/pathology , Genetic Heterogeneity , Multiple Myeloma/genetics , Neoplastic Cells, Circulating/pathology , DNA Mutational Analysis , Feasibility Studies , Gene Expression Profiling , Genotype , Humans , Loss of Heterozygosity , Multiple Myeloma/blood , Mutation , Plasma Cells/metabolism , Prognosis , Proof of Concept Study , Sequence Analysis, RNA , Single-Cell Analysis , Transcription, Genetic , Tumor Burden
20.
J Exp Med ; 213(7): 1285-306, 2016 06 27.
Article En | MEDLINE | ID: mdl-27325891

Drugs targeting metabolism have formed the backbone of therapy for some cancers. We sought to identify new such targets in acute myeloid leukemia (AML). The one-carbon folate pathway, specifically methylenetetrahydrofolate dehydrogenase-cyclohydrolase 2 (MTHFD2), emerged as a top candidate in our analyses. MTHFD2 is the most differentially expressed metabolic enzyme in cancer versus normal cells. Knockdown of MTHFD2 in AML cells decreased growth, induced differentiation, and impaired colony formation in primary AML blasts. In human xenograft and MLL-AF9 mouse leukemia models, MTHFD2 suppression decreased leukemia burden and prolonged survival. Based upon primary patient AML data and functional genomic screening, we determined that FLT3-ITD is a biomarker of response to MTHFD2 suppression. Mechanistically, MYC regulates the expression of MTHFD2, and MTHFD2 knockdown suppresses the TCA cycle. This study supports the therapeutic targeting of MTHFD2 in AML.


Citric Acid Cycle , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/epidemiology , Methenyltetrahydrofolate Cyclohydrolase/biosynthesis , Proto-Oncogene Proteins c-myc/metabolism , Animals , Gene Knockdown Techniques , HL-60 Cells , Heterografts , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Methenyltetrahydrofolate Cyclohydrolase/genetics , Mice , Neoplasm Transplantation , Proto-Oncogene Proteins c-myc/genetics , U937 Cells
...