Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biotechnol ; 23(1): 4, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755248

RESUMEN

Standard cell culture practices require the addition of animal-derived serum to culture media to achieve adequate cell growth. Typically, 5-10% by volume of fetal bovine serum (FBS) is used, which accounts for a vast majority of the media cost while also imposing environmental and ethical concerns associated with the use of animal serum. Here we tested the efficacy of culturing cells by replacing serum in the media with algae extract and select additives. Using LC-MS, we compared molecular signatures of FBS to Chlorella algae extracts and identified NAD(H)/NADP(H) as common and relatively abundant features in their characteristic profiles. Bovine fibroblasts, cultured in serum-free media supplemented with C. vulgaris extract and just two growth factors plus insulin, showed significant growth with enhanced viability compared to control cells cultured without serum, albeit still lower than that of controls cultured with 10% FBS. Moreover, C. vulgaris extract enhanced cell viability beyond that of cells cultured with the two growth factors and insulin alone. These results suggest that key components in serum which are essential for cell growth may also be present in C. vulgaris extract, demonstrating that it may be used at least as a partial alternative to serum for cell culture applications.


Asunto(s)
Chlorella vulgaris , Medio de Cultivo Libre de Suero , Fibroblastos , Animales , Células Cultivadas , Chlorella vulgaris/química , Medios de Cultivo , Insulinas , Bovinos
2.
Sci Immunol ; 6(60)2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145066

RESUMEN

The nutrient-sensing mammalian target of rapamycin (mTOR) is integral to cell fate decisions after T cell activation. Sustained mTORC1 activity favors the generation of terminally differentiated effector T cells instead of follicular helper and memory T cells. This is particularly pertinent for T cell responses of older adults who have sustained mTORC1 activation despite dysfunctional lysosomes. Here, we show that lysosome-deficient T cells rely on late endosomes rather than lysosomes as an mTORC1 activation platform, where mTORC1 is activated by sensing cytosolic amino acids. T cells from older adults have an increased expression of the plasma membrane leucine transporter SLC7A5 to provide a cytosolic amino acid source. Hence, SLC7A5 and VPS39 deficiency (a member of the HOPS complex promoting early to late endosome conversion) substantially reduced mTORC1 activities in T cells from older but not young individuals. Late endosomal mTORC1 is independent of the negative-feedback loop involving mTORC1-induced inactivation of the transcription factor TFEB that controls expression of lysosomal genes. The resulting sustained mTORC1 activation impaired lysosome function and prevented lysosomal degradation of PD-1 in CD4+ T cells from older adults, thereby inhibiting their proliferative responses. VPS39 silencing of human T cells improved their expansion to pertussis and to SARS-CoV-2 peptides in vitro. Furthermore, adoptive transfer of CD4+ Vps39-deficient LCMV-specific SMARTA cells improved germinal center responses, CD8+ memory T cell generation, and recall responses to infection. Thus, curtailing late endosomal mTORC1 activity is a promising strategy to enhance T cell immunity.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Endosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , SARS-CoV-2/metabolismo , Transducción de Señal/genética , Traslado Adoptivo/métodos , Adulto , Anciano , Anciano de 80 o más Años , Animales , Proteínas Relacionadas con la Autofagia/deficiencia , Proteínas Relacionadas con la Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , COVID-19/virología , Células Cultivadas , Femenino , Proteína Forkhead Box O1/deficiencia , Proteína Forkhead Box O1/genética , Voluntarios Sanos , Humanos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/inmunología , Transfección , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/genética , Adulto Joven
3.
NPJ Aging Mech Dis ; 7(1): 4, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558531

RESUMEN

MicroRNAs play an important role in the regulation of T cell development, activation, and differentiation. One of the most abundant microRNAs in lymphocytes is miR-181a, which controls T cell receptor (TCR) activation thresholds in thymic selection as well as in peripheral T cell responses. We previously found that miR-181a levels decline in T cells in the elderly. In this study, we identified TCF1 as a transcriptional regulator of pri-miR-181a. A decline in TCF1 levels in old individuals accounted for the reduced miR-181a expression impairing TCR signaling. Inhibition of GSK3ß restored expression of miR-181a by inducing TCF1 in T cells from old adults. GSK3ß inhibition enhanced TCR signaling to increase downstream expression of activation markers and production of IL-2. The effect involved the upregulation of miR-181a and the inhibition of DUSP6 expression. Thus, inhibition of GSK3ß can restore responses of old T cells by inducing miR-181a expression through TCF1.

4.
Proc Natl Acad Sci U S A ; 117(1): 532-540, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31879353

RESUMEN

The T cell repertoire in each individual includes T cell receptors (TCRs) of enormous sequence diversity through the pairing of diverse TCR α- and ß-chains, each generated by somatic recombination of paralogous gene segments. Whether the TCR repertoire contributes to susceptibility to infectious or autoimmune diseases in concert with disease-associated major histocompatibility complex (MHC) polymorphisms is unknown. Due to a lack in high-throughput technologies to sequence TCR α-ß pairs, current studies on whether the TCR repertoire is shaped by host genetics have so far relied only on single-chain analysis. Using a high-throughput single T cell sequencing technology, we obtained the largest paired TCRαß dataset so far, comprising 965,523 clonotypes from 15 healthy individuals including 6 monozygotic twin pairs. Public TCR α- and, to a lesser extent, TCR ß-chain sequences were common in all individuals. In contrast, sharing of entirely identical TCRαß amino acid sequences was very infrequent in unrelated individuals, but highly increased in twins, in particular in CD4 memory T cells. Based on nucleotide sequence identity, a subset of these shared clonotypes appeared to be the progeny of T cells that had been generated during fetal development and had persisted for more than 50 y. Additional shared TCRαß in twins were encoded by different nucleotide sequences, implying that genetic determinants impose structural constraints on thymic selection that favor the selection of TCR α-ß pairs with entire sequence identities.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta/genética , Gemelos Monocigóticos/genética , Adulto , Secuencia de Aminoácidos/genética , Secuencia de Bases/genética , Linfocitos T CD4-Positivos/metabolismo , Conjuntos de Datos como Asunto , Femenino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Prueba de Histocompatibilidad , Humanos , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Modelos Genéticos , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Análisis de Secuencia de ADN , Análisis de la Célula Individual
5.
Eur J Neurosci ; 32(1): 29-40, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20608967

RESUMEN

The rodent ventrobasal (VB) thalamus receives sensory inputs from the whiskers and projects to the cortex, from which it receives reciprocal excitatory afferents. Much is known about the properties and functional roles of these glutamatergic inputs to thalamocortical neurons in the VB, but no data are available on how these afferents can affect thalamic glial cells. In this study, we used combined electrophysiological recordings and intracellular calcium ([Ca(2+)](i)) imaging to investigate glial cell responses to synaptic afferent stimulation. VB thalamus glial cells can be divided into two groups based on their [Ca(2+)](i) and electrophysiological responses to sensory and corticothalamic stimulation. One group consists of astrocytes, which stain positively for S100B and preferentially load with SR101, have linear current-voltage relations and low input resistance, show no voltage-dependent [Ca(2+)](i) responses, but express mGluR5-dependent [Ca(2+)](i) transients following stimulation of the sensory and/or corticothalamic excitatory afferent pathways. Cells of the other glial group, by contrast, stain positively for NG2, and are characterized by high input resistance, the presence of voltage-dependent [Ca(2+)](i) elevations and voltage-gated inward currents. There were no synaptically induced [Ca(2+)](i) elevations in these cells under control conditions. These results show that thalamic glial cell responses to synaptic input exhibit different properties to those of thalamocortical neurons. As VB astrocytes can respond to synaptic stimulation and signal to neighbouring neurons, this glial cell organization may have functional implications for the processing of somatosensory information and modulation of behavioural state-dependent thalamocortical network activities.


Asunto(s)
Vías Aferentes/fisiología , Corteza Cerebral/fisiología , Neuroglía , Tálamo/citología , 6-Ciano 7-nitroquinoxalina 2,3-diona/metabolismo , Animales , Calcio/metabolismo , Antagonistas de Aminoácidos Excitadores/metabolismo , Neuroglía/citología , Neuroglía/fisiología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/metabolismo , Tálamo/fisiología , Vibrisas/inervación
6.
Nat Med ; 15(12): 1392-8, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19966779

RESUMEN

The cellular mechanisms underlying typical absence seizures, which characterize various idiopathic generalized epilepsies, are not fully understood, but impaired gamma-aminobutyric acid (GABA)-ergic inhibition remains an attractive hypothesis. In contrast, we show here that extrasynaptic GABA(A) receptor-dependent 'tonic' inhibition is increased in thalamocortical neurons from diverse genetic and pharmacological models of absence seizures. Increased tonic inhibition is due to compromised GABA uptake by the GABA transporter GAT-1 in the genetic models tested, and GAT-1 is crucial in governing seizure genesis. Extrasynaptic GABA(A) receptors are a requirement for seizures in two of the best characterized models of absence epilepsy, and the selective activation of thalamic extrasynaptic GABA(A) receptors is sufficient to elicit both electrographic and behavioral correlates of seizures in normal rats. These results identify an apparently common cellular pathology in typical absence seizures that may have epileptogenic importance and highlight potential therapeutic targets for the treatment of absence epilepsy.


Asunto(s)
Epilepsia Tipo Ausencia/metabolismo , Antagonistas de Receptores de GABA-A , Animales , Epilepsia Tipo Ausencia/fisiopatología , Proteínas Transportadoras de GABA en la Membrana Plasmática/fisiología , Ratas , Receptores de GABA-A/fisiología
7.
FEMS Yeast Res ; 3(4): 333-9, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12748046

RESUMEN

Oscillatory metabolic activities occur more widely than is generally realised; detectability requires observation over extended times of single yeast cells or synchrony of individuals to provide a coherent population. Where oscillations in intracellular metabolite concentrations are observed, the phenomenon has been ascribed to sloppy control, energetic optimisation, signalling, temporal compartmentation of incompatible reactions, or timekeeping functions. Here we emphasise the consequences of respiratory oscillations as a source of mitochondrially generated reactive O(2) metabolites. Temporal co-ordination of intracellular activities necessitates a time base. This is provided by an ultradian clock, and one result of its long-term operation is cyclic energisation of mitochondria, and thereby the generation of deleterious free radical species. Our hypothesis is that unrepaired cellular constituents and components (especially mitochondria) eventually lead to cellular senescence and apoptosis when a finite number of respiratory cycles has occurred.


Asunto(s)
Apoptosis/fisiología , Relojes Biológicos/fisiología , Respiración de la Célula/fisiología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Levaduras/metabolismo , Mitocondrias/fisiología , Oxidación-Reducción , Levaduras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA